Brusa, L., Bartolucci, F., Pennoni, F., Peruilh Bagolini, R. (2024). A penalized maximum likelihood estimation for hidden Markov models to address latent state separation. In PROGRAMME AND ABSTRACTS: 26th International Conference on Computational Statistics (COMPSTAT 2024) (pp.29-29).

A penalized maximum likelihood estimation for hidden Markov models to address latent state separation

Brusa, L.
;
Pennoni, F.;
2024

abstract + slide
Binary longitudinal data, Discrete latent variables, Expectation-Maximization algorithm, Hypotension data, Model-based probabilistic clustering, Penalized likelihood
English
26th International Conference on Computational Statistics (COMPSTAT 2024)
2024
PROGRAMME AND ABSTRACTS: 26th International Conference on Computational Statistics (COMPSTAT 2024)
9789073592421
2024
29
29
http://www.compstat2024.org/docs/COMPSTAT2024_BoA.pdf?20240730003320
partially_open
Brusa, L., Bartolucci, F., Pennoni, F., Peruilh Bagolini, R. (2024). A penalized maximum likelihood estimation for hidden Markov models to address latent state separation. In PROGRAMME AND ABSTRACTS: 26th International Conference on Computational Statistics (COMPSTAT 2024) (pp.29-29).
File in questo prodotto:
File Dimensione Formato  
Brusa-2024-CompStat-Abstract.pdf

Solo gestori archivio

Descrizione: Abstract
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Brusa-2024-CompStat-Slide.pdf

accesso aperto

Descrizione: Slide of the presentation
Tipologia di allegato: Other attachments
Licenza: Creative Commons
Dimensione 364.62 kB
Formato Adobe PDF
364.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/509060
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact