In security applications the human face plays a fundamental role, however we have to assume non-collaborative subjects. A face can be partially visible or occluded due to common-use accessories such as sunglasses, hats, scarves and so on. Also the posture of the head influence the face recognizability. Given a video sequence in input, the proposed system is able to establish if a face is depicted in a frame, and to determine its degree of recognizability in terms of clearly visible facial features. The system implements features filtering scheme combined with a skin-based face detection to improve its the robustness to false positives and cartoon-like faces. Moreover the system takes into account the recognizability trend over a customizable sliding time window to allow a high level analysis of the subject behaviour. The recognizability criteria can be tuned for each specific application. We evaluate our system both in qualitative and quantitative terms, using a data set of manually annotated videos. Experimental results confirm the effectiveness of the proposed system.
Bianco, S., Ciocca, G., Guarnera, G., Scaggiante, A., Schettini, R. (2014). Scoring recognizability of faces for security applications. In Image Processing: Machine Vision Applications VII. SPIE [10.1117/12.2041250].
Scoring recognizability of faces for security applications
BIANCO, SIMONE;CIOCCA, GIANLUIGI;GUARNERA, GIUSEPPE CLAUDIO;SCHETTINI, RAIMONDO
2014
Abstract
In security applications the human face plays a fundamental role, however we have to assume non-collaborative subjects. A face can be partially visible or occluded due to common-use accessories such as sunglasses, hats, scarves and so on. Also the posture of the head influence the face recognizability. Given a video sequence in input, the proposed system is able to establish if a face is depicted in a frame, and to determine its degree of recognizability in terms of clearly visible facial features. The system implements features filtering scheme combined with a skin-based face detection to improve its the robustness to false positives and cartoon-like faces. Moreover the system takes into account the recognizability trend over a customizable sliding time window to allow a high level analysis of the subject behaviour. The recognizability criteria can be tuned for each specific application. We evaluate our system both in qualitative and quantitative terms, using a data set of manually annotated videos. Experimental results confirm the effectiveness of the proposed system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.