At present, magnetic confinement fusion devices rely solely on absolute neutron counting as a direct way of measuring fusion power. Absolute counting of deuterium-tritium gamma rays could provide the secondary neutron-independent technique required for the validation of scientific results and as a licensing tool for future power plants. However, this approach necessitates an accurate determination of the gamma-ray-to-neutron branching ratio. The gamma-ray-to-neutron branching ratio for the deuterium-tritium reaction H3(H2,γ)He5/H3(H2,n)He4 was determined in magnetic confinement fusion plasmas at the Joint European Torus in predominantly deuterium beam heated plasmas. The branching ratio was found to be equal to (2.4±0.5)×10-5 over the deuterium energy range of (80±20) keV. This accurate determination of the deuterium-tritium branching ratio paves the way for a direct and neutron-independent measurement of fusion power in magnetic confinement fusion reactors, based on the absolute counting of deuterium-tritium gamma rays.
Dal Molin, A., Marcer, G., Nocente, M., Rebai, M., Rigamonti, D., Angelone, M., et al. (2024). Measurement of the Gamma-Ray-to-Neutron Branching Ratio for the Deuterium-Tritium Reaction in Magnetic Confinement Fusion Plasmas. PHYSICAL REVIEW LETTERS, 133(5) [10.1103/PhysRevLett.133.055102].
Measurement of the Gamma-Ray-to-Neutron Branching Ratio for the Deuterium-Tritium Reaction in Magnetic Confinement Fusion Plasmas
Dal Molin A.;Marcer G.;Nocente M.;Rebai M.;Rigamonti D.
;Cazzaniga C.;Croci G.;Dalla Rosa M.;Giacomelli L.;Gorini G.;Muraro A.;Panontin E.;Perelli Cippo E.;Putignano O.;Scionti J.;Tardocchi M.
2024
Abstract
At present, magnetic confinement fusion devices rely solely on absolute neutron counting as a direct way of measuring fusion power. Absolute counting of deuterium-tritium gamma rays could provide the secondary neutron-independent technique required for the validation of scientific results and as a licensing tool for future power plants. However, this approach necessitates an accurate determination of the gamma-ray-to-neutron branching ratio. The gamma-ray-to-neutron branching ratio for the deuterium-tritium reaction H3(H2,γ)He5/H3(H2,n)He4 was determined in magnetic confinement fusion plasmas at the Joint European Torus in predominantly deuterium beam heated plasmas. The branching ratio was found to be equal to (2.4±0.5)×10-5 over the deuterium energy range of (80±20) keV. This accurate determination of the deuterium-tritium branching ratio paves the way for a direct and neutron-independent measurement of fusion power in magnetic confinement fusion reactors, based on the absolute counting of deuterium-tritium gamma rays.File | Dimensione | Formato | |
---|---|---|---|
Dal Molin-2024-PhysRevLett-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.