We implement an analytic approach for ordinal measures and we use it to investigate the structure and the changes over time of self-worth in a sample of adolescents students in high school. We represent the variations in self-worth and its various sub-domains using entropy-based measures that capture the observed uncertainty. We then study the evolution of the entropy across four time points throughout a semester of high school. Our analytic approach yields information about the configuration of the various dimensions of the self together with time-related changes and associations among these dimensions. We represent the results using a network that depicts self-worth changes over time. This approach also identifies groups of adolescent students who show different patterns of associations, thus emphasizing the need to consider heterogeneity in the data.
Furfaro, E., Hsieh, F., Weiss, M., Ferrer, E. (2024). Using Conditional Entropy Networks of Ordinal Measures to Examine Changes in Self-Worth Among Adolescent Students in High School. MULTIVARIATE BEHAVIORAL RESEARCH, 59(5), 1077-1097 [10.1080/00273171.2024.2372635].
Using Conditional Entropy Networks of Ordinal Measures to Examine Changes in Self-Worth Among Adolescent Students in High School
Furfaro E.;
2024
Abstract
We implement an analytic approach for ordinal measures and we use it to investigate the structure and the changes over time of self-worth in a sample of adolescents students in high school. We represent the variations in self-worth and its various sub-domains using entropy-based measures that capture the observed uncertainty. We then study the evolution of the entropy across four time points throughout a semester of high school. Our analytic approach yields information about the configuration of the various dimensions of the self together with time-related changes and associations among these dimensions. We represent the results using a network that depicts self-worth changes over time. This approach also identifies groups of adolescent students who show different patterns of associations, thus emphasizing the need to consider heterogeneity in the data.File | Dimensione | Formato | |
---|---|---|---|
Furfaro-2024-MultivBehavResearch-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
3.16 MB
Formato
Adobe PDF
|
3.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.