Side-channel analysis (SCA) is a class of attacks on the physical implementation of a cipher, which enables the extraction of confidential key information by exploiting unintended leaks generated by a device. In recent years, researchers have observed that neural networks (NNs) can be utilized to perform highly effective SCA profiling, even against countermeasure-hardened targets. This study investigates a new approach to designing NNs for SCA, called neuroevolution to attack side-channel traces yielding convolutional neural networks (NASCTY-CNNs). This method is based on a genetic algorithm (GA) that evolves the architectural hyperparameters to automatically create CNNs for side-channel analysis. The findings of this research demonstrate that we can achieve performance results comparable to state-of-the-art methods when dealing with desynchronized leakages protected by masking techniques. This indicates that employing similar neuroevolutionary techniques could serve as a promising avenue for further exploration. Moreover, the similarities observed among the constructed neural networks shed light on how NASCTY effectively constructs architectures and addresses the implemented countermeasures.
Schijlen, F., Wu, L., Mariot, L. (2023). NASCTY: Neuroevolution to Attack Side-Channel Leakages Yielding Convolutional Neural Networks. MATHEMATICS, 11(12), 1-20 [10.3390/math11122616].
NASCTY: Neuroevolution to Attack Side-Channel Leakages Yielding Convolutional Neural Networks
Mariot, Luca
2023
Abstract
Side-channel analysis (SCA) is a class of attacks on the physical implementation of a cipher, which enables the extraction of confidential key information by exploiting unintended leaks generated by a device. In recent years, researchers have observed that neural networks (NNs) can be utilized to perform highly effective SCA profiling, even against countermeasure-hardened targets. This study investigates a new approach to designing NNs for SCA, called neuroevolution to attack side-channel traces yielding convolutional neural networks (NASCTY-CNNs). This method is based on a genetic algorithm (GA) that evolves the architectural hyperparameters to automatically create CNNs for side-channel analysis. The findings of this research demonstrate that we can achieve performance results comparable to state-of-the-art methods when dealing with desynchronized leakages protected by masking techniques. This indicates that employing similar neuroevolutionary techniques could serve as a promising avenue for further exploration. Moreover, the similarities observed among the constructed neural networks shed light on how NASCTY effectively constructs architectures and addresses the implemented countermeasures.File | Dimensione | Formato | |
---|---|---|---|
Schijlen-2023-Mathematics-VoR.pdf
accesso aperto
Descrizione: CC BY 4.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
572.03 kB
Formato
Adobe PDF
|
572.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.