In several combinatorial optimization problems arising in cryptography and design theory, the admissible solutions must often satisfy a balancedness constraint, such as being represented by bitstrings with a fixed number of ones. For this reason, several works in the literature tackling these optimization problems with Genetic Algorithms (GA) introduced new balanced crossover operators which ensure that the offspring has the same balancedness characteristics of the parents. However, the use of such operators has never been thoroughly motivated, except for some generic considerations about search space reduction. In this paper, we undertake a rigorous statistical investigation on the effect of balanced and unbalanced crossover operators against three optimization problems from the area of cryptography and coding theory: nonlinear balanced Boolean functions, binary Orthogonal Arrays (OA) and bent functions. In particular, we consider three different balanced crossover operators (each with two variants: “left-to-right” and “shuffled”), two of which have never been published before, and compare their performances with classic one-point crossover. We are able to confirm that the balanced crossover operators perform better than one-point crossover. Furthermore, in two out of three crossovers, the “left-to-right” version performs better than the “shuffled” version.
Manzoni, L., Mariot, L., Tuba, E. (2020). Balanced crossover operators in Genetic Algorithms. SWARM AND EVOLUTIONARY COMPUTATION, 54, 1-11 [10.1016/j.swevo.2020.100646].
Balanced crossover operators in Genetic Algorithms
Manzoni, Luca;Mariot, Luca;
2020
Abstract
In several combinatorial optimization problems arising in cryptography and design theory, the admissible solutions must often satisfy a balancedness constraint, such as being represented by bitstrings with a fixed number of ones. For this reason, several works in the literature tackling these optimization problems with Genetic Algorithms (GA) introduced new balanced crossover operators which ensure that the offspring has the same balancedness characteristics of the parents. However, the use of such operators has never been thoroughly motivated, except for some generic considerations about search space reduction. In this paper, we undertake a rigorous statistical investigation on the effect of balanced and unbalanced crossover operators against three optimization problems from the area of cryptography and coding theory: nonlinear balanced Boolean functions, binary Orthogonal Arrays (OA) and bent functions. In particular, we consider three different balanced crossover operators (each with two variants: “left-to-right” and “shuffled”), two of which have never been published before, and compare their performances with classic one-point crossover. We are able to confirm that the balanced crossover operators perform better than one-point crossover. Furthermore, in two out of three crossovers, the “left-to-right” version performs better than the “shuffled” version.File | Dimensione | Formato | |
---|---|---|---|
Manzoni-2020-Swarm Evo Comp-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.