This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.

(2014). Variational and geometric methods for nonlinear differential equations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014).

Variational and geometric methods for nonlinear differential equations

SOAVE, NICOLA
2014

Abstract

This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.
TERRACINI, SUSANNA
FARINA, ALBERTO
Variational methods; geometric analysis; nonlinear oscillator; Landesman-Lazer conditions; N-centre problem; negative energy; symbolic dynamics; phase separation; elliptic systems; solutions with exponential growth; Almgren monotonicity formula; Liouville theorems; half-space problem; 1-dimensional symmetry; moving planes method.
MAT/05 - ANALISI MATEMATICA
English
17-gen-2014
Scuola di dottorato di Scienze
MATEMATICA PURA E APPLICATA - 23R
26
2012/2013
UNIVERSITE DE PICARDIE JULES VERNE
Il prodotto della ricerca svolta negli anni di dottorato, finalizzato con la stesura della tesi, ha prodotto anche sei articoli, attualmente in fase di pubblicazione su riviste scientifiche. Una di queste pubblicazioni e` in collaborazione con la Professoressa Susanna Terracini, due con il Professor Alberto Farina, una con il Dottor Gianmaria Verzini, una con lo studente di dottorato Alessandro Zilio. Per quanto riguarda i precisi riferimenti bibliografici, si rimanda alla bibliografia della tesi.
open
(2014). Variational and geometric methods for nonlinear differential equations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_744866.pdf

accesso aperto

Tipologia di allegato: Doctoral thesis
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/49889
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact