In this paper we study the dynamics of D-dimensional cellular automata (CA) by considering them as one-dimensional (1D) CA along some direction (slicing constructions). These constructions allow to give the D-dimensional version of important notions as 1D closing property and lift well-known one-dimensional results to the D-dimensional settings. Indeed, like in one-dimensional case, closing D-dimensional CA have jointly dense periodic orbits and biclosing D-dimensional CA are open. By the slicing constructions, we further prove that for the class of closing D-dimensional CA, surjectivity implies surjectivity on spatially periodic configurations (old standing open problem). We also deal with the decidability problem of the D-dimensional closing. By extending the Kari's construction from [31] based on tilings, we prove that the two-dimensional, and then D-dimensional, closing property is undecidable. In such a way, we add one further item to the class of dimension sensitive properties, i.e., properties that are decidable in dimension 1 and are undecidable in higher dimensions. It is well-known that there are not positively expansive CA in dimension 2 and higher. As a meaningful replacement, we introduce the notion of quasi-expansivity for D-dimensional CA which shares many global properties (in the D-dimensional settings) with the 1D positive expansivity. We also prove that for quasi-expansive D-dimensional CA the topological entropy (which is an uncomputable property for general CA) has infinite value. In a similar way as quasi-expansivity, the notions of quasi-sensitivity and quasi-almost equicontinuity are introduced and studied. © 2013 Elsevier B.V.

Dennunzio, A., Formenti, E., Weiss, M. (2014). Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. THEORETICAL COMPUTER SCIENCE, 516, 40-59 [10.1016/j.tcs.2013.11.005].

Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues

DENNUNZIO, ALBERTO;
2014

Abstract

In this paper we study the dynamics of D-dimensional cellular automata (CA) by considering them as one-dimensional (1D) CA along some direction (slicing constructions). These constructions allow to give the D-dimensional version of important notions as 1D closing property and lift well-known one-dimensional results to the D-dimensional settings. Indeed, like in one-dimensional case, closing D-dimensional CA have jointly dense periodic orbits and biclosing D-dimensional CA are open. By the slicing constructions, we further prove that for the class of closing D-dimensional CA, surjectivity implies surjectivity on spatially periodic configurations (old standing open problem). We also deal with the decidability problem of the D-dimensional closing. By extending the Kari's construction from [31] based on tilings, we prove that the two-dimensional, and then D-dimensional, closing property is undecidable. In such a way, we add one further item to the class of dimension sensitive properties, i.e., properties that are decidable in dimension 1 and are undecidable in higher dimensions. It is well-known that there are not positively expansive CA in dimension 2 and higher. As a meaningful replacement, we introduce the notion of quasi-expansivity for D-dimensional CA which shares many global properties (in the D-dimensional settings) with the 1D positive expansivity. We also prove that for quasi-expansive D-dimensional CA the topological entropy (which is an uncomputable property for general CA) has infinite value. In a similar way as quasi-expansivity, the notions of quasi-sensitivity and quasi-almost equicontinuity are introduced and studied. © 2013 Elsevier B.V.
Articolo in rivista - Articolo scientifico
Cellular automata, symbolic dynamics, decidability, tiling
English
2014
516
40
59
none
Dennunzio, A., Formenti, E., Weiss, M. (2014). Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues. THEORETICAL COMPUTER SCIENCE, 516, 40-59 [10.1016/j.tcs.2013.11.005].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/49507
Citazioni
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 27
Social impact