We investigate the ground states of the one-dimensional nonlinear Schrödinger equation with a defect located at a fixed point. The nonlinearity is focusing and consists of a subcritical power. The notion of ground state can be defined in several (often non-equivalent) ways. We define a ground state as a minimizer of the energy functional among the functions endowed with the same mass. This is the physically meaningful definition in the main fields of application of NLS. In this context we prove an abstract theorem that revisits the concentration-compactness method and which is suitable to treat NLS with inhomogeneities. Then we apply it to three models, describing three different kinds of defect: delta potential, delta prime interaction, and dipole. In the three cases we explicitly compute ground states and we show their orbital stability

Adami, R., Noja, D., Visciglia, N. (2013). Constrained energy minimization and ground states for NLS with point defects. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B., 18(5), 1155-1188 [10.3934/dcdsb.2013.18.1155].

Constrained energy minimization and ground states for NLS with point defects

NOJA, DIEGO DAVIDE;
2013

Abstract

We investigate the ground states of the one-dimensional nonlinear Schrödinger equation with a defect located at a fixed point. The nonlinearity is focusing and consists of a subcritical power. The notion of ground state can be defined in several (often non-equivalent) ways. We define a ground state as a minimizer of the energy functional among the functions endowed with the same mass. This is the physically meaningful definition in the main fields of application of NLS. In this context we prove an abstract theorem that revisits the concentration-compactness method and which is suitable to treat NLS with inhomogeneities. Then we apply it to three models, describing three different kinds of defect: delta potential, delta prime interaction, and dipole. In the three cases we explicitly compute ground states and we show their orbital stability
Articolo in rivista - Articolo scientifico
Nonlinear Schroedinger equation; standing waves; ground states; orbital stability
English
2013
18
5
1155
1188
reserved
Adami, R., Noja, D., Visciglia, N. (2013). Constrained energy minimization and ground states for NLS with point defects. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B., 18(5), 1155-1188 [10.3934/dcdsb.2013.18.1155].
File in questo prodotto:
File Dimensione Formato  
ANV_DCDSB.pdf

Solo gestori archivio

Dimensione 837.79 kB
Formato Adobe PDF
837.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/49458
Citazioni
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
Social impact