Clustering is an unsupervised machine learning methodology widely used in several sciences to find groups of similar patterns in complex data. The results generated by clustering algorithms generally depend on user-defined input parameters such as the number of expected clusters, which can have a great impact on the homogeneity of the identified clusters. Clustering validity indices (CVIs) are an effective method for determining the optimal number of clusters that best fit the natural partition of a dataset. They do not require any underlying assumption nor a priori knowledge about the true dataset structure. Since 1965, many cluster validity indices have been proposed in the literature and used in several different applications. In this paper, the performance of 68 cluster validity indices was evaluated on 21 real-life research and simulated datasets. CVIs were compared on the same partition for each dataset, which was searched for by the k-means clustering algorithm. Multivariate chemometric methods were applied to disclose mutual relationships among the indices and to select those that are more effective in terms of accuracy and reliability.
Todeschini, R., Ballabio, D., Termopoli, V., Consonni, V. (2024). Extended multivariate comparison of 68 cluster validity indices. A review. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 251(15 August 2024) [10.1016/j.chemolab.2024.105117].
Extended multivariate comparison of 68 cluster validity indices. A review
Todeschini, Roberto;Ballabio, Davide;Termopoli, Veronica;Consonni, Viviana
2024
Abstract
Clustering is an unsupervised machine learning methodology widely used in several sciences to find groups of similar patterns in complex data. The results generated by clustering algorithms generally depend on user-defined input parameters such as the number of expected clusters, which can have a great impact on the homogeneity of the identified clusters. Clustering validity indices (CVIs) are an effective method for determining the optimal number of clusters that best fit the natural partition of a dataset. They do not require any underlying assumption nor a priori knowledge about the true dataset structure. Since 1965, many cluster validity indices have been proposed in the literature and used in several different applications. In this paper, the performance of 68 cluster validity indices was evaluated on 21 real-life research and simulated datasets. CVIs were compared on the same partition for each dataset, which was searched for by the k-means clustering algorithm. Multivariate chemometric methods were applied to disclose mutual relationships among the indices and to select those that are more effective in terms of accuracy and reliability.File | Dimensione | Formato | |
---|---|---|---|
Todeschini-2024-Chemometrics and Intelligent Laboratory Systems-VoR.pdf
accesso aperto
Descrizione: This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
6.22 MB
Formato
Adobe PDF
|
6.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.