We propose formulas for the large N expansion of the generating function of connected correlators of the β-deformed Gaussian and Wishart–Laguerre matrix models. We show that our proposal satisfies the known transformation properties under the exchange of β with 1/β and, using Virasoro constraints, we derive a recursion formula for the coefficients of the expansion. In the undeformed limit β=1, these coefficients are integers and they have the combinatorial interpretation of generalized Catalan numbers. For generic β, we define the higher genus Catalan polynomials Cg,ν(β) whose coefficients are integer numbers.

Cassia, L., Posch, V., Zabzine, M. (2024). β-Ensembles and higher genera Catalan numbers. LETTERS IN MATHEMATICAL PHYSICS, 114(1) [10.1007/s11005-023-01764-x].

β-Ensembles and higher genera Catalan numbers

Cassia L.
;
2024

Abstract

We propose formulas for the large N expansion of the generating function of connected correlators of the β-deformed Gaussian and Wishart–Laguerre matrix models. We show that our proposal satisfies the known transformation properties under the exchange of β with 1/β and, using Virasoro constraints, we derive a recursion formula for the coefficients of the expansion. In the undeformed limit β=1, these coefficients are integers and they have the combinatorial interpretation of generalized Catalan numbers. For generic β, we define the higher genus Catalan polynomials Cg,ν(β) whose coefficients are integer numbers.
Articolo in rivista - Articolo scientifico
matrix models; beta ensembles; Catalan numbers; Virasoro constraints; 05A15; 81R10; 81T32
English
5-feb-2024
2024
114
1
26
open
Cassia, L., Posch, V., Zabzine, M. (2024). β-Ensembles and higher genera Catalan numbers. LETTERS IN MATHEMATICAL PHYSICS, 114(1) [10.1007/s11005-023-01764-x].
File in questo prodotto:
File Dimensione Formato  
Cassia-2024-Lett Math Phys-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 566.1 kB
Formato Adobe PDF
566.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/489279
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact