By working in a symplectically covariant real formulation of special Kahler geometry, we propose and give strong evidence for a canonical BPS partition function for AdS2 xw M2 near-horizon geometries with arbitrary rotation and generic magnetic and electric charges. Here, M2 is either a two-sphere or a spindle. We also show that how the attractor equations and the Bekenstein-Hawking entropy can be obtained from an extremization principle. & COPY; 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

Hosseini, S. (2023). Gravitational blocks: Symplectic covariance unveiled. PHYSICS LETTERS. SECTION B, 843(10 August 2023) [10.1016/j.physletb.2023.138044].

Gravitational blocks: Symplectic covariance unveiled

Hosseini Seyed Morteza
2023

Abstract

By working in a symplectically covariant real formulation of special Kahler geometry, we propose and give strong evidence for a canonical BPS partition function for AdS2 xw M2 near-horizon geometries with arbitrary rotation and generic magnetic and electric charges. Here, M2 is either a two-sphere or a spindle. We also show that how the attractor equations and the Bekenstein-Hawking entropy can be obtained from an extremization principle. & COPY; 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
Articolo in rivista - Articolo scientifico
supergravity; AdS/CFT correspondence
English
28-giu-2023
2023
843
10 August 2023
138044
open
Hosseini, S. (2023). Gravitational blocks: Symplectic covariance unveiled. PHYSICS LETTERS. SECTION B, 843(10 August 2023) [10.1016/j.physletb.2023.138044].
File in questo prodotto:
File Dimensione Formato  
Hosseini-23-PhysLettB-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 293.38 kB
Formato Adobe PDF
293.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/487381
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact