We study the possibility of using the LiteBIRD satellite B-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike"field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.
Campeti, P., Komatsu, E., Baccigalupi, C., Ballardini, M., Bartolo, N., Carones, A., et al. (2024). LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024(6) [10.1088/1475-7516/2024/06/008].
LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization
Conenna G.;Gervasi M.;
2024
Abstract
We study the possibility of using the LiteBIRD satellite B-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike"field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.File | Dimensione | Formato | |
---|---|---|---|
Campeti-2024-Journal of Cosmology and Astroparticle Physics-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
13.69 MB
Formato
Adobe PDF
|
13.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.