We find a lower bound on the proportion of derangements in a finite transitive group that depends on the minimal nontrivial subdegree. As a consequence, we prove that, if Γ is a G-vertex-transitive digraph of valency d≥1, then the proportion of derangements in G is greater than 1/2d.
Barbieri, M., Spiga, P. (2024). On derangements and suborbits in finite transitive groups. DISCRETE MATHEMATICS, 347(7 (July 2024)) [10.1016/j.disc.2024.114032].
On derangements and suborbits in finite transitive groups
Spiga P.
2024
Abstract
We find a lower bound on the proportion of derangements in a finite transitive group that depends on the minimal nontrivial subdegree. As a consequence, we prove that, if Γ is a G-vertex-transitive digraph of valency d≥1, then the proportion of derangements in G is greater than 1/2d.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Barbieri-2024-Discrete Mathematics-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
211.3 kB
Formato
Adobe PDF
|
211.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.