We find a lower bound on the proportion of derangements in a finite transitive group that depends on the minimal nontrivial subdegree. As a consequence, we prove that, if Γ is a G-vertex-transitive digraph of valency d≥1, then the proportion of derangements in G is greater than 1/2d.

Barbieri, M., Spiga, P. (2024). On derangements and suborbits in finite transitive groups. DISCRETE MATHEMATICS, 347(7 (July 2024)) [10.1016/j.disc.2024.114032].

On derangements and suborbits in finite transitive groups

Spiga P.
2024

Abstract

We find a lower bound on the proportion of derangements in a finite transitive group that depends on the minimal nontrivial subdegree. As a consequence, we prove that, if Γ is a G-vertex-transitive digraph of valency d≥1, then the proportion of derangements in G is greater than 1/2d.
Articolo in rivista - Articolo scientifico
Bounded valency; Derangement; Subdegree; Vertex-transitive;
English
16-apr-2024
2024
347
7 (July 2024)
114032
reserved
Barbieri, M., Spiga, P. (2024). On derangements and suborbits in finite transitive groups. DISCRETE MATHEMATICS, 347(7 (July 2024)) [10.1016/j.disc.2024.114032].
File in questo prodotto:
File Dimensione Formato  
Barbieri-2024-Discrete Mathematics-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 211.3 kB
Formato Adobe PDF
211.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/486039
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact