The discovery of the gravitational wave signal GW170817, compatible with a binary neutron star system, by the LIGO and Virgo collaboration, along with the subsequent identification of its multi-wavelength electromagnetic counterparts, marked the beginning of the multi-messenger astronomy era. Notably, a second binary neutron star merger, GW190425, was also detected, yet it did not present any associated electromagnetic counterpart. Even black hole-neutron star mergers have the potential to produce electromagnetic emissions, but, although already detected through their GW signals, no electromagnetic counterpart has been associated with these events to date. During the third observing run of the gravitational wave detectors network O3 and the initial phase of the fourth run O4a, extensive electromagnetic follow-up campaigns were conducted. Despite significant investment in observational resources, these efforts predominantly yielded only contaminants, particularly supernovae Ia, providing limited insights into the properties of the gravitational wave-emitting binaries. As we progress towards the later stages of observing run O4, the forthcoming O5, and with the development of third-generation gravitational wave interferometers like the Einstein Telescope and Cosmic Explorer, the need for precise predictions becomes increasingly critical. These predictions are essential for refining follow-up strategies to maximize the likelihood of detecting associated, rapidly fading transient phenomena. This doctoral thesis presents a realistic projection of the number and characteristics of binary neutron star and black hole-neutron star mergers expected to be observable as multi-messenger sources during O4, O5, and by third-generation detectors. The objective is to provide strategic guidance for optimizing observational approaches. These predictions are grounded in a population synthesis model that incorporates various elements: the gravitational wave signal-to-noise ratio, inferred sky localization, kilonova optical and near-infrared light curves, peak photon flux of the relativistic jet gamma-ray burst prompt emission, and afterglow light curves across radio, optical, and X-ray wavelengths. Utilizing this approach, it is possible to delineate the expected distributions of electromagnetic observables for events detectable in the current and upcoming O4, O5 observing runs, and by future gravitational wave observatories. This study, therefore, addresses pivotal questions and offers an in-depth, contemporary perspective on the present and future of multi-messenger astronomy.
La scoperta del segnale di onda gravitazionale GW170817, compatibile con un sistema di stelle di neutroni binarie, da parte della collaborazione LIGO e Virgo, insieme all'identificazione successiva delle sue controparti elettromagnetiche multi-lunghezza d'onda, ha segnato l'inizio dell'era dell'astronomia multi-messaggera. In particolare, è stata rilevata anche una seconda fusione di stelle di neutroni binarie, GW190425, che tuttavia non ha presentato alcun corrispondente elettromagnetico associato. Anche le fusioni tra buco nero e stella di neutroni hanno il potenziale di produrre emissioni elettromagnetiche, ma, sebbene già rilevate attraverso i loro segnali di onde gravitazionali, fino ad oggi nessuna controparte è stata associata a questi eventi. Durante il terzo ciclo di osservazione della rete di rilevatori di onde gravitazionali O3 e la fase iniziale del quarto ciclo O4a, sono state condotte ampie campagne di follow-up elettromagnetico. Nonostante significativi investimenti in risorse osservative, questi sforzi hanno principalmente prodotto solo contaminanti, in particolare supernovae Ia, fornendo informazioni limitate sulle proprietà delle binarie gravitazionali. Man mano che procediamo verso le fasi avanzate del ciclo osservativo O4 e O5, e con lo sviluppo di interferometri di onde gravitazionali di terza generazione come Einstein Telescope e Cosmic Explorer, la necessità di previsioni precise diventa sempre più critica. Queste previsioni sono essenziali per affinare le strategie di follow-up per massimizzare la probabilità di rilevare fenomeni transitori elettromagnetici associati a questi eventi. Questa tesi di dottorato presenta una proiezione realistica del numero e delle caratteristiche delle fusioni di stelle di neutroni e fusioni buco nero-stella di neutroni che si prevede siano osservabili come fonti multi-messaggere durante O4, O5 e dai rilevatori di terza generazione. L'obiettivo è fornire una guida strategica per ottimizzare gli approcci osservativi. Queste previsioni si basano su un modello di sintesi di popolazione che incorpora vari elementi: il rapporto segnale-rumore dell'onda gravitazionale, la localizzazione del cielo inferita, le curve di luce ottiche e infrarosse della kilonova, il picco del flusso in fotoni dell'emissione del gamma ray burst, e le curve di luce dell’emissione afterglow nelle lunghezze d'onda radio, ottiche e X. Utilizzando questo approccio, è possibile delineare le distribuzioni previste degli osservabili elettromagnetici per gli eventi rilevabili negli attuali e imminenti cicli osservativi O4, O5, e dai futuri osservatori di onde gravitazionali. Questo studio affronta quindi domande fondamentali e offre una prospettiva approfondita e contemporanea sul presente e sul futuro dell'astronomia multi-messaggera.
(2024). Present and Future of Multi-Messenger Astronomy: Binary Neutron Star and Black Hole - Neutron Star Mergers. (Tesi di dottorato, , 2024).
Present and Future of Multi-Messenger Astronomy: Binary Neutron Star and Black Hole - Neutron Star Mergers
COLOMBO, ALBERTO
2024
Abstract
The discovery of the gravitational wave signal GW170817, compatible with a binary neutron star system, by the LIGO and Virgo collaboration, along with the subsequent identification of its multi-wavelength electromagnetic counterparts, marked the beginning of the multi-messenger astronomy era. Notably, a second binary neutron star merger, GW190425, was also detected, yet it did not present any associated electromagnetic counterpart. Even black hole-neutron star mergers have the potential to produce electromagnetic emissions, but, although already detected through their GW signals, no electromagnetic counterpart has been associated with these events to date. During the third observing run of the gravitational wave detectors network O3 and the initial phase of the fourth run O4a, extensive electromagnetic follow-up campaigns were conducted. Despite significant investment in observational resources, these efforts predominantly yielded only contaminants, particularly supernovae Ia, providing limited insights into the properties of the gravitational wave-emitting binaries. As we progress towards the later stages of observing run O4, the forthcoming O5, and with the development of third-generation gravitational wave interferometers like the Einstein Telescope and Cosmic Explorer, the need for precise predictions becomes increasingly critical. These predictions are essential for refining follow-up strategies to maximize the likelihood of detecting associated, rapidly fading transient phenomena. This doctoral thesis presents a realistic projection of the number and characteristics of binary neutron star and black hole-neutron star mergers expected to be observable as multi-messenger sources during O4, O5, and by third-generation detectors. The objective is to provide strategic guidance for optimizing observational approaches. These predictions are grounded in a population synthesis model that incorporates various elements: the gravitational wave signal-to-noise ratio, inferred sky localization, kilonova optical and near-infrared light curves, peak photon flux of the relativistic jet gamma-ray burst prompt emission, and afterglow light curves across radio, optical, and X-ray wavelengths. Utilizing this approach, it is possible to delineate the expected distributions of electromagnetic observables for events detectable in the current and upcoming O4, O5 observing runs, and by future gravitational wave observatories. This study, therefore, addresses pivotal questions and offers an in-depth, contemporary perspective on the present and future of multi-messenger astronomy.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_778156.pdf
accesso aperto
Descrizione: Tesi definitiva
Tipologia di allegato:
Doctoral thesis
Dimensione
14.87 MB
Formato
Adobe PDF
|
14.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.