Given a permutation group G, the derangement graph of G is the Cayley graph with connection set the derangements of G. The group G is said to be innately transitive if G has a transitive minimal normal subgroup. Clearly, every primitive group is innately transitive. We show that, besides an infinite family of explicit exceptions, there exists a function f W N ! N such that, if G is innately transitive of degree n and the derangement graph of G has no clique of size k, then n ≤ f .k/. Motivation for this work arises from investigations on Erdos–Ko–Rado type theorems for permutation groups.

Fusari, M., Previtali, A., Spiga, P. (2024). Cliques in derangement graphs for innately transitive groups. JOURNAL OF GROUP THEORY, 27(5), 929-965 [10.1515/jgth-2023-0284].

Cliques in derangement graphs for innately transitive groups

Previtali A.
Co-primo
;
Spiga P.
Co-primo
2024

Abstract

Given a permutation group G, the derangement graph of G is the Cayley graph with connection set the derangements of G. The group G is said to be innately transitive if G has a transitive minimal normal subgroup. Clearly, every primitive group is innately transitive. We show that, besides an infinite family of explicit exceptions, there exists a function f W N ! N such that, if G is innately transitive of degree n and the derangement graph of G has no clique of size k, then n ≤ f .k/. Motivation for this work arises from investigations on Erdos–Ko–Rado type theorems for permutation groups.
Articolo in rivista - Articolo scientifico
primitive groups
English
15-mar-2024
2024
27
5
929
965
partially_open
Fusari, M., Previtali, A., Spiga, P. (2024). Cliques in derangement graphs for innately transitive groups. JOURNAL OF GROUP THEORY, 27(5), 929-965 [10.1515/jgth-2023-0284].
File in questo prodotto:
File Dimensione Formato  
Fusari-2024-J Group Theory-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 558.54 kB
Formato Adobe PDF
558.54 kB Adobe PDF Visualizza/Apri
Fusari-2024-J Group Theory-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 316.61 kB
Formato Adobe PDF
316.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/481962
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact