Helium is widely used as a fuel or minority gas in laboratory fusion experiments, and will be present as ash in DT thermonuclear plasmas. It is therefore essential to have a good understanding of its atomic physics. To this end He II population modelling has been undertaken for the spectroscopic levels arising from shells with principal quantum number n = 1-5. This paper focuses on a collisional excitation model; ionisation and recombination will be considered in a subsequent article. Heavy particle collisional excitation rate coefficients have been generated to supplement the currently-available atomic data for He II, and are presented for proton, deuteron, triton and -particle projectiles. The widely-used criterion for levels within an n shell being populated in proportion to their statistical weights is reassessed with the most recent atomic data, and found not to apply to the He II levels at tokamak densities (1018-1021 m-3). Consequences of this and other likely sources of errors are quantified, as is the effect of differing electron and ion temperatures. Line intensity ratios, including the so-called 'branching ratios' and the fine-structure β 1, β 2, β 3 and γ ratios, are discussed, the latter with regard to their possible use as diagnostics.

Lawson, K., Aggarwal, K., Coffey, I., Keenan, F., O'Mullane, M., Litaudon, X., et al. (2019). Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. JOURNAL OF PHYSICS. B, ATOMIC MOLECULAR AND OPTICAL PHYSICS, 52(4) [10.1088/1361-6455/aaf703].

Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model

Bonanomi N.;Croci G.;Gorini G.;Muraro A.;Nocente M.;Rigamonti D.;Tardocchi M.;
2019

Abstract

Helium is widely used as a fuel or minority gas in laboratory fusion experiments, and will be present as ash in DT thermonuclear plasmas. It is therefore essential to have a good understanding of its atomic physics. To this end He II population modelling has been undertaken for the spectroscopic levels arising from shells with principal quantum number n = 1-5. This paper focuses on a collisional excitation model; ionisation and recombination will be considered in a subsequent article. Heavy particle collisional excitation rate coefficients have been generated to supplement the currently-available atomic data for He II, and are presented for proton, deuteron, triton and -particle projectiles. The widely-used criterion for levels within an n shell being populated in proportion to their statistical weights is reassessed with the most recent atomic data, and found not to apply to the He II levels at tokamak densities (1018-1021 m-3). Consequences of this and other likely sources of errors are quantified, as is the effect of differing electron and ion temperatures. Line intensity ratios, including the so-called 'branching ratios' and the fine-structure β 1, β 2, β 3 and γ ratios, are discussed, the latter with regard to their possible use as diagnostics.
Articolo in rivista - Articolo scientifico
He II; Population modelling; Spectral line intensity ratios; Tokamak plasmas;
English
2019
52
4
045001
none
Lawson, K., Aggarwal, K., Coffey, I., Keenan, F., O'Mullane, M., Litaudon, X., et al. (2019). Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. JOURNAL OF PHYSICS. B, ATOMIC MOLECULAR AND OPTICAL PHYSICS, 52(4) [10.1088/1361-6455/aaf703].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/481320
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact