Following muscle injury, a series of well-coordinated events unfold to ensure proper healing. In this sequence, inflammatory cells, especially macrophages (MPs), play a fundamental role by contributing to the phagocytosis of damaged tissue and by sending signals that activate and coordinate the actions of other cells involved. As the healing progresses, these previous inflammatory MPs switch to an anti-inflammatory/ regenerative state, that is key for accurately signalling the actions of the muscle regenerating niche and ensure a successful muscle healing. In our group it has been previously shown that one of these key crosstalk is established between MPs and endothelial cells (ECs), as partial depletion of infiltrating MPs leads ECs to differentiating into mesenchymal-like cells. During this process, known as endothelial-to-mesenchymal transition (EndMT), the ECs lose their endothelial characteristics and acquire mesenchymal features, consequently contributing to extracellular matrix accumulation. However, the specific mechanisms underlying this transdifferentiation in the muscle, as well as the specific role of MPs in influencing it, remains unexplored. Here we show that disruptions in MP recruitment upon injury leads to significant changes in the cellular composition of the regenerating muscle niche, resulting in an increased prevalence of mesenchymal cells and a diminished presence of both MP populations and ECs. Furthermore, it also affects the accurate polarization of MPs during repair, that is key for regulating ECs phenotypic fate. The dysregulated phenotype observed in the reduced MP population within the muscle creates a more pro-inflammatory, less regenerative, and less angiogenic environmental state, consequently prompting the ECs population to undergo EndMT through the activation of TGF-β signalling. Our analysis of intercellular communication and immunostaining further highlighted complex signalling mechanisms between MPs and ECs that influence ECs behaviour, particularly involving TNF, SPP1, and GDF-15.
A seguito di un danno muscolare, una serie di eventi ben coordinati si sviluppano per garantire una corretta guarigione. In questa sequenza, le cellule infiammatorie, in particolare i macrofagi (MPs), svolgono un ruolo fondamentale contribuendo alla fagocitosi del tessuto danneggiato e inviando segnali che attivano e coordinano le azioni delle altre cellule coinvolte. Man mano che la guarigione progredisce, questi MPs inizialmente infiammatori passano a uno stato anti-infiammatorio/riparativo, fondamentale per segnalare accuratamente le azioni della nicchia di rigenerazione muscolare e garantire una riuscita guarigione muscolare. Nel nostro gruppo è stato precedentemente dimostrato che uno di questi cruciali scambi di informazioni si verifica tra MPs e cellule endoteliali (ECs), poiché la deplezione parziale dei MPs infiltranti porta le ECs a differenziarsi in cellule simili a mesenchimali. Durante questo processo, noto come transizione endotelio-mesenchimale (EndMT), le ECs perdono le loro caratteristiche endoteliali e acquisiscono caratteristiche mesenchimali, contribuendo di conseguenza all'accumulo della matrice extracellulare. Tuttavia, i meccanismi specifici alla base di questa transdifferenziazione nel muscolo, così come il ruolo specifico dei MPs nel influenzarla, rimangono inesplorati. Qui mostriamo che le interruzioni nella reclutamento dei MPs a seguito di un danno portano a significative modifiche nella composizione cellulare della nicchia muscolare in rigenerazione, risultando in un aumento della prevalenza di cellule mesenchimali e una presenza ridotta sia delle popolazioni di MPs che di ECs. Inoltre, ciò influisce anche sulla corretta polarizzazione dei MPs durante la riparazione, essenziale per regolare il destino fenotipico delle ECs. La fenotipizzazione disregolata osservata nella ridotta popolazione di MPs nel muscolo crea uno stato ambientale più pro-infiammatorio, meno rigenerativo e meno angiogenico, spingendo di conseguenza la popolazione di ECs a subire l'EndMT attraverso l'attivazione della segnalazione del TGF-β. La nostra analisi della comunicazione intercellulare e dell'immunostaining ha inoltre evidenziato complessi meccanismi di segnalazione tra MPs e ECs che influenzano il comportamento delle ECs, in particolare coinvolgendo TNF, SPP1 e GDF-15.
(2024). Study of the molecular mechanism of Endothelial to Mesenchymal Transition during muscle regeneration and crosstalk with the immune system in vivo and in vitro.. (Tesi di dottorato, , 2024).
Study of the molecular mechanism of Endothelial to Mesenchymal Transition during muscle regeneration and crosstalk with the immune system in vivo and in vitro.
Timòteo Ferreira, Filipa
2024
Abstract
Following muscle injury, a series of well-coordinated events unfold to ensure proper healing. In this sequence, inflammatory cells, especially macrophages (MPs), play a fundamental role by contributing to the phagocytosis of damaged tissue and by sending signals that activate and coordinate the actions of other cells involved. As the healing progresses, these previous inflammatory MPs switch to an anti-inflammatory/ regenerative state, that is key for accurately signalling the actions of the muscle regenerating niche and ensure a successful muscle healing. In our group it has been previously shown that one of these key crosstalk is established between MPs and endothelial cells (ECs), as partial depletion of infiltrating MPs leads ECs to differentiating into mesenchymal-like cells. During this process, known as endothelial-to-mesenchymal transition (EndMT), the ECs lose their endothelial characteristics and acquire mesenchymal features, consequently contributing to extracellular matrix accumulation. However, the specific mechanisms underlying this transdifferentiation in the muscle, as well as the specific role of MPs in influencing it, remains unexplored. Here we show that disruptions in MP recruitment upon injury leads to significant changes in the cellular composition of the regenerating muscle niche, resulting in an increased prevalence of mesenchymal cells and a diminished presence of both MP populations and ECs. Furthermore, it also affects the accurate polarization of MPs during repair, that is key for regulating ECs phenotypic fate. The dysregulated phenotype observed in the reduced MP population within the muscle creates a more pro-inflammatory, less regenerative, and less angiogenic environmental state, consequently prompting the ECs population to undergo EndMT through the activation of TGF-β signalling. Our analysis of intercellular communication and immunostaining further highlighted complex signalling mechanisms between MPs and ECs that influence ECs behaviour, particularly involving TNF, SPP1, and GDF-15.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_877911.pdf
embargo fino al 22/05/2027
Descrizione: Tesi di Timóteo Ferreira Filipa - 877911
Tipologia di allegato:
Doctoral thesis
Dimensione
4.44 MB
Formato
Adobe PDF
|
4.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.