This work highlights recent application of energy-selective neutron imaging at the ISIS Neutron and Muon Source, specifically focusing on the development of Neutron Resonance Transmission Imaging (NRTI) at the INES instrument. NRTI is a nuclear technique based on resonant neutron absorption reaction, which combines the sensitivity to elemental and isotopic composition with detailed morphological information, using the epithermal portion of the neutron flux available on the INES instrument at the ISIS facility. Unlike standard neutron radiography and tomography methods, NRTI preserves detailed time and energy information for each detector pixel, enabling enhanced visualisation of elemental distribution inside an object’s volume, with the potential for quantitative elemental analysis. These features combined with the non-destructiveness of NRTI make the method promising for applications in the field of Cultural Heritage, especially when it is employed in a multi-technique approach to provide complementary information about the composition and the crystalline structure of archaeological artefacts. A study related to Heritage Science is presented to demonstrate the effectiveness of NRTI in non-destructive investigations of inhomogeneous artefacts, specifically focusing on the excavation finds related to the first evidence of ancient brass production in Milan, Italy, during Roman times.

Marcucci, G., Scherillo, A., Riccardi, M., Cucini, C., Lemasson, Q., Di Martino, D. (2024). Mapping the elemental distribution in archaeological findings through advanced Neutron Resonance Transmission Imaging. THE EUROPEAN PHYSICAL JOURNAL PLUS, 139(6 (June 2024 )) [10.1140/epjp/s13360-024-05222-y].

Mapping the elemental distribution in archaeological findings through advanced Neutron Resonance Transmission Imaging

Marcucci, G
Primo
;
Di Martino, D
Ultimo
2024

Abstract

This work highlights recent application of energy-selective neutron imaging at the ISIS Neutron and Muon Source, specifically focusing on the development of Neutron Resonance Transmission Imaging (NRTI) at the INES instrument. NRTI is a nuclear technique based on resonant neutron absorption reaction, which combines the sensitivity to elemental and isotopic composition with detailed morphological information, using the epithermal portion of the neutron flux available on the INES instrument at the ISIS facility. Unlike standard neutron radiography and tomography methods, NRTI preserves detailed time and energy information for each detector pixel, enabling enhanced visualisation of elemental distribution inside an object’s volume, with the potential for quantitative elemental analysis. These features combined with the non-destructiveness of NRTI make the method promising for applications in the field of Cultural Heritage, especially when it is employed in a multi-technique approach to provide complementary information about the composition and the crystalline structure of archaeological artefacts. A study related to Heritage Science is presented to demonstrate the effectiveness of NRTI in non-destructive investigations of inhomogeneous artefacts, specifically focusing on the excavation finds related to the first evidence of ancient brass production in Milan, Italy, during Roman times.
Articolo in rivista - Articolo scientifico
neutron imaging; elemental imaging; neutron spectroscopy; epithermal neutron; roman brass
English
2024
139
6 (June 2024 )
475
embargoed_20250428
Marcucci, G., Scherillo, A., Riccardi, M., Cucini, C., Lemasson, Q., Di Martino, D. (2024). Mapping the elemental distribution in archaeological findings through advanced Neutron Resonance Transmission Imaging. THE EUROPEAN PHYSICAL JOURNAL PLUS, 139(6 (June 2024 )) [10.1140/epjp/s13360-024-05222-y].
File in questo prodotto:
File Dimensione Formato  
Marcucci-2024-Eur Phys J Plus-AAM.pdf

embargo fino al 28/04/2025

Descrizione: This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1140/epjp/s13360-024-05222-y
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/480359
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
Social impact