Conflict-induced control refers to humans' ability to regulate attention in the processing of target information (e.g., the color of a word in the color-word Stroop task) based on experience with conflict created by distracting information (e.g., an incongruent color word), and to do so either in a proactive (preparatory) or a reactive (stimulus-driven) fashion. Interest in conflict-induced control has grown recently, as has the awareness that effects attributed to those processes might be affected by conflict-unrelated processes (e.g., the learning of stimulus-response associations). This awareness has resulted in the recommendation to move away from traditional interference paradigms with small stimulus/response sets and towards paradigms with larger sets (at least four targets, distractors, and responses), paradigms that allow better control of non-conflict processes. Using larger sets, however, is not always feasible. Doing so in the Stroop task, for example, would require either multiple arbitrary responses that are difficult for participants to learn (e.g., manual responses to colors) or non-arbitrary responses that can be difficult for researchers to collect (e.g., vocal responses in online experiments). Here, we present a spatial version of the Stroop task that solves many of those problems. In this task, participants respond to one of six directions indicated by an arrow, each requiring a specific, non-arbitrary manual response, while ignoring the location where the arrow is displayed. We illustrate the usefulness of this task by showing the results of two experiments in which evidence for proactive and reactive control was obtained while controlling for the impact of non-conflict processes.
Spinelli, G., Lupker, S. (2024). A spatial version of the Stroop task for examining proactive and reactive control independently from non-conflict processes. ATTENTION, PERCEPTION & PSYCHOPHYSICS, 86(4), 1259-1286 [10.3758/s13414-024-02892-9].
A spatial version of the Stroop task for examining proactive and reactive control independently from non-conflict processes
Spinelli, G
;
2024
Abstract
Conflict-induced control refers to humans' ability to regulate attention in the processing of target information (e.g., the color of a word in the color-word Stroop task) based on experience with conflict created by distracting information (e.g., an incongruent color word), and to do so either in a proactive (preparatory) or a reactive (stimulus-driven) fashion. Interest in conflict-induced control has grown recently, as has the awareness that effects attributed to those processes might be affected by conflict-unrelated processes (e.g., the learning of stimulus-response associations). This awareness has resulted in the recommendation to move away from traditional interference paradigms with small stimulus/response sets and towards paradigms with larger sets (at least four targets, distractors, and responses), paradigms that allow better control of non-conflict processes. Using larger sets, however, is not always feasible. Doing so in the Stroop task, for example, would require either multiple arbitrary responses that are difficult for participants to learn (e.g., manual responses to colors) or non-arbitrary responses that can be difficult for researchers to collect (e.g., vocal responses in online experiments). Here, we present a spatial version of the Stroop task that solves many of those problems. In this task, participants respond to one of six directions indicated by an arrow, each requiring a specific, non-arbitrary manual response, while ignoring the location where the arrow is displayed. We illustrate the usefulness of this task by showing the results of two experiments in which evidence for proactive and reactive control was obtained while controlling for the impact of non-conflict processes.File | Dimensione | Formato | |
---|---|---|---|
Spinelli-2024-Atten Percept Psychophys-VOR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.