Bladder cancer (BC) is one of the most common malignancies worldwide. Symptoms are often absent and the frequent non muscle invasive (NMIBC) high grade tumors are associated to a high risk of relapses, resulting in high costs for patient follow-up. Frequent relapses often progress to muscle invasive tumors (MIBC), that result in a poor prognosis. Cystoscopy and transurethral resection of bladder tumor (TURBT) are the most used diagnostic methods. However, the frequent incomplete resections, related to the difficulty to establish the level of penetration of the tumor, cause most of the wrong diagnoses and relapse onsets. Therefore, identifying new markers is crucial to attribute the correct classification at the time of resection, improving patient’s prognosis. Energy metabolism reprogramming is an established cancer hallmark, and altered metabolic pathways can represent attractive clinical targets exploitable in new therapeutic strategies. This thesis, part of the Horizon2020 project AMPLITUDE (Advanced Multimodal Photonics Laser Imaging Tool for Urothelial Diagnosis in Endoscopy), represents the path followed these three years to study the functional and metabolic features of a panel of six bladder cancer cell lines, to find a marker for cancer progression. A first characterization of the cell lines grown in 2D models showed the intrinsic heterogeneity between these cells. MIBC cell lines showed a range of morpho-functional properties that allow them the manifestation of a more aggressive phenotype, compared to the two NMIBC cell lines. The metabolic phenotype as well showed high heterogeneity not relatable with the cancer progression, although some features correlated with the genetic background of the cell lines. From 2D models, we decided to grow cells forming spheroids, known to be more representative for the in vivo pathology, better simulating the architectural complexity of a tumor mass. The characterization of the 2D to 3D transition confirmed that the heterogeneity observed in the 2D cultures is kept in spheroid growth. Additionally, we demonstrated that 3D growth induces a profound stage- and grade-independent gene expression rearrangement indicative of a proliferative rate decrease, differentiation, and alteration of sensing processes, although keeping a high metabolic activity. Interestingly, the metabolic rewiring is cell line-specific and not uniformly leads to an increase in glycolysis. Since the intrinsic heterogeneity covers the metabolic differences that could be used as marker for cancer progression, the last part of this thesis focused on the metabolic characterization of the sole 3D model, comparing the cell lines belonging to the NMIBC versus the MIBC groups. Using a systems biology approach, integrating omics analyses, and morpho-functional assays (including analysis of metabolic fluxes by Seahorse technology) with mathematical models of metabolism, we demonstrated a common stage-dependent metabolic rearrangement, consisting in a downregulation of the fatty acids biosynthesis, upregulating the mitochondrial fatty acids β-oxidation in the MIBC cell lines, compared to the NMIBC counterpart. This approach included an initial validation using Raman spectroscopy, a non-invasive and label-free technology able to provide specific information about the biochemical composition of analytes in a rapid manner, already used in a clinical setting for diagnosis of cancer. Raman analysis proved capable of discriminating NMIBC and MIBC samples, opening up a perspective of improvement of BC diagnosis.
Il tumore alla vescica è uno dei più diffusi a livello mondiale. Spesso non presenta sintomi e l’alta frequenza di tumori non muscolo invasivi ad alto grado è associata ad un elevato rischio di recidiva, con la necessità di controlli periodici, con impatti a livello economico. Le recidive portano alla progressione a tumori muscolo invasivi correlati ad una prognosi sfavorevole. I metodi di diagnosi più utilizzati sono la cistoscopia e la TURBT, quest’ultima utilizzata anche a scopo terapeutico. Tuttavia, spesso si verifica un’incompleta rimozione del tumore, dovuta ad una difficoltà nello stabilire l’entità della penetrazione, con aumento della probabilità di diagnosi errate e insorgenza di recidive. Diventa quindi cruciale identificare marcatori che permettano di assegnare, al momento della resezione, la corretta classificazione, migliorando la prognosi. La riprogrammazione del metabolismo è considerato un tratto distintivo della crescita tumorale, e lo studio dei processi metabolici alterati nella patologia può rappresentare un bersaglio clinico utilizzabile per nuove strategie terapeutiche. Questa tesi, nata dal progetto Horizon2020 AMPLITUDE (Advanced Multimodal Photonics Laser Imaging Tool for Urothelial Diagnosis in Endoscopy), riassume il percorso svoltosi nel corso di tre anni, volto a studiare le caratteristiche funzionali e metaboliche di un pannello di sei linee cellulari di tumore alla vescica, con lo scopo di trovare un marcatore indicativo della progressione tumorale. Una prima caratterizzazione delle linee cellulari cresciute in colture 2D ha rivelato un’eterogeneità intrinseca tra queste cellule. Le cellule muscolo invasive hanno mostrato un ampio spettro di proprietà morfo-funzionali che garantisce loro di manifestare un fenotipo più aggressivo rispetto alle linee non muscolo invasive. Allo stesso modo, anche il fenotipo metabolico si è rivelato altamente eterogeneo, senza correlazioni con la progressione tumorale. Tuttavia, è stato possibile correlare alcune di queste proprietà con il profilo genetico di alcune linee cellulari. Abbiamo quindi deciso di generare delle colture 3D già utilizzate nella ricerca oncologica, in quanto capaci di rappresentare più fedelmente la patologia in vivo. Lo studio della transizione da 2D a 3D ha confermato che l’eterogeneità osservata in precedenza viene mantenuta negli sferoidi. Inoltre, abbiamo dimostrato che la crescita in 3D induce in tutte le linee cellulari, indipendentemente dalla classificazione, un profondo riarrangiamento dell’espressione genica causa di un decremento del tasso proliferativo, differenziamento e alterazione dei processi di comunicazione cellula-cellula, tuttavia conservando un’alta attività metabolica. In particolare, abbiamo dimostrato che il riarrangiamento metabolico è linea-specifico e che non in tutte le linee cellulari la crescita in 3D porta ad un aumento della glicolisi. Dal momento che questa eterogeneità intrinseca copre eventuali differenze metaboliche da poter usare come marcatore della progressione tumorale, l’ultima parte di questo lavoro è stata focalizzata sulla caratterizzazione metabolica degli sferoidi, confrontando i due gruppi non muscolo invasivo e muscolo invasivo. Tramite un approccio di biologia dei sistemi, con l’integrazione di diverse analisi omiche, con saggi funzionali e metabolici con la generazione di un modello matematico del metabolismo, abbiamo identificato una deregolazione del metabolismo degli acidi grassi dipendente dallo stadio tumorale. Questo approccio è stato validato tramite spettroscopia Raman, una tecnica non invasiva, in grado di identificare la composizione biochimica di un campione, già usata a scopo di diagnosi in ambito clinico. Le analisi Raman si sono rivelate capaci di discriminare i campioni delle linee muscolo invasive da quelli non muscolo invasivi, lasciando una prospettiva di miglioramento per la diagnosi del tumore alla vescica.
(2024). Exploitation of 2D and 3D in vitro models to highlight metabolic markers of bladder cancer progression. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Exploitation of 2D and 3D in vitro models to highlight metabolic markers of bladder cancer progression
DUCCI, GIACOMO
2024
Abstract
Bladder cancer (BC) is one of the most common malignancies worldwide. Symptoms are often absent and the frequent non muscle invasive (NMIBC) high grade tumors are associated to a high risk of relapses, resulting in high costs for patient follow-up. Frequent relapses often progress to muscle invasive tumors (MIBC), that result in a poor prognosis. Cystoscopy and transurethral resection of bladder tumor (TURBT) are the most used diagnostic methods. However, the frequent incomplete resections, related to the difficulty to establish the level of penetration of the tumor, cause most of the wrong diagnoses and relapse onsets. Therefore, identifying new markers is crucial to attribute the correct classification at the time of resection, improving patient’s prognosis. Energy metabolism reprogramming is an established cancer hallmark, and altered metabolic pathways can represent attractive clinical targets exploitable in new therapeutic strategies. This thesis, part of the Horizon2020 project AMPLITUDE (Advanced Multimodal Photonics Laser Imaging Tool for Urothelial Diagnosis in Endoscopy), represents the path followed these three years to study the functional and metabolic features of a panel of six bladder cancer cell lines, to find a marker for cancer progression. A first characterization of the cell lines grown in 2D models showed the intrinsic heterogeneity between these cells. MIBC cell lines showed a range of morpho-functional properties that allow them the manifestation of a more aggressive phenotype, compared to the two NMIBC cell lines. The metabolic phenotype as well showed high heterogeneity not relatable with the cancer progression, although some features correlated with the genetic background of the cell lines. From 2D models, we decided to grow cells forming spheroids, known to be more representative for the in vivo pathology, better simulating the architectural complexity of a tumor mass. The characterization of the 2D to 3D transition confirmed that the heterogeneity observed in the 2D cultures is kept in spheroid growth. Additionally, we demonstrated that 3D growth induces a profound stage- and grade-independent gene expression rearrangement indicative of a proliferative rate decrease, differentiation, and alteration of sensing processes, although keeping a high metabolic activity. Interestingly, the metabolic rewiring is cell line-specific and not uniformly leads to an increase in glycolysis. Since the intrinsic heterogeneity covers the metabolic differences that could be used as marker for cancer progression, the last part of this thesis focused on the metabolic characterization of the sole 3D model, comparing the cell lines belonging to the NMIBC versus the MIBC groups. Using a systems biology approach, integrating omics analyses, and morpho-functional assays (including analysis of metabolic fluxes by Seahorse technology) with mathematical models of metabolism, we demonstrated a common stage-dependent metabolic rearrangement, consisting in a downregulation of the fatty acids biosynthesis, upregulating the mitochondrial fatty acids β-oxidation in the MIBC cell lines, compared to the NMIBC counterpart. This approach included an initial validation using Raman spectroscopy, a non-invasive and label-free technology able to provide specific information about the biochemical composition of analytes in a rapid manner, already used in a clinical setting for diagnosis of cancer. Raman analysis proved capable of discriminating NMIBC and MIBC samples, opening up a perspective of improvement of BC diagnosis.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_792440.pdf
embargo fino al 06/05/2027
Descrizione: Tesi di Ducci Giacomo - 792440
Tipologia di allegato:
Doctoral thesis
Dimensione
44.33 MB
Formato
Adobe PDF
|
44.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.