Muonic Atom X-ray Emission spectroscopy (μ-XES) is a novel technique in the field of Heritage Science. The method uses beams of negative muons to probe materials: the capture process leads to the formation of the so-called ”muonic atom”. In this bound state, the muon starts to travel down to the ground state of the atom with the emission of fingerprint high-energy X-rays that can be used for elemental identification. Thanks to its remarkable penetration depth, negligible self-absorption of the emitted radiation and sensitivity to all the elements of the periodic table, the technique represents a unique approach to the study of artefacts. At the ISIS Neutron and Muon Source (UK), μ-XES is performed at Port4 of the RIKEN-RAL muon facility. Here, the instrument setup is in continuous development and one of the primary aims of the project was to provide an upgrade to the detection system. Moreover, the project focused on the development of the data analysis of negative muon data. In both cases, the work was based on the use of a Monte Carlo simulation tool called GEANT4/ARBY, developed by the INFN section of Milano Bicocca. Firstly, the ARBY tool was used to model a future instrument concept. With two different scenarios, one for an immediate update and one for a future upgrade, the work focused on the development of an ultimate detector setup. Starting from a well-known detector configuration, the Euroball cluster, a detector array was modelled. The idea was to model a single crystal able to respond to the main necessities of the method: a good resolution in the very low energy part of the spectrum (from 10 to 100 keV) and a good efficiency in the high energy part (< 1 MeV). From simulations, the best approach was represented by a detector array composedof segmented crystals, as reported in Chapter 3. The ARBY tool was not only used for modelling but also for replicating negative muon experiments. The results, reported in Chapter 4, show a tool that is not yet reliable for the generation of X-rays after the muon interaction with matter, due to missing transition in the generated spectra. A solution to this issue could be represented by a Dirac equation solver called MuDirac, developed by the UKRI scientific computing department and the ISIS muon group. The output of the MuDirac software was implemented in ARBY and the preliminary result of the approach showed an improvement of the simulated spectra. Finally, in Chapter 5 the ARBY tool was used for the assessment of thin gold layers in mockups and historic samples. To perform a characterization of the layers, ARBY was used along with the SRIM-TRIM software: by using the information on the number of muons stopped in a given layer, simulations were compared to the data coming from real experiments. The results of the test on mockup samples, which were previously characterized by other methods, testified to the goodness of the approach. Therefore, the method was finally used for the characterization of the gilding of a piece of the Baptistery gate of Florence, a formella representing the Annunciation to Zachary. Differently from mockups, here the thickness of the layers of gold was unknown: by combining the results of the simulation with the experimental data, layers of about 16μm were assessed for the two standing figures and an uneven layer for the altar, where the size of gold ranged from a few microns up to 50 μm.

La Muonic Atom X-ray Emission spectroscopy (μ-XES) è una tecnica innovativa nel campo della Scienza dei beni culturali. Questo metodo utilizza fasci di muoni negativi per studiare i materiali: il processo di cattura porta alla formazione del cosiddetto "atomo muonico". In questo stato legato, il muone si muove verso stato fondamentale dell'atomo con l'emissione di raggi X ad alta energia tipici dell’emettitore (i cosiddetti "fingerprint"), che possono essere utilizzati per l'identificazione degli elementi. Grazie alla sua notevole profondità di penetrazione, al trascurabile auto-assorbimento della radiazione emessa e alla sensibilità a tutti gli elementi della tavola periodica, questa tecnica rappresenta un approccio unico allo studio di manufatti di interesse storico-artistico. Alla ISIS Neutron and Muon Source (Regno Unito), μ-XES viene eseguita presso la Port4 della RIKEN-RAL facility. Qui, la configurazione strumentale è in continuo sviluppo, e uno degli obiettivi principali del progetto era fornire un aggiornamento al sistema di rivelazione. Inoltre, il progetto si è concentrato sullo sviluppo dell'analisi dei dati dei muoni negativi. In entrambi i casi, il lavoro si è basato sull'uso di uno strumento di simulazione Monte Carlo chiamato GEANT4/ARBY, sviluppato dalla sezione INFN di Milano Bicocca. due scenari differenti, uno per un aggiornamento immediato e uno per un futuro miglioramento, il lavoro si è concentrato sullo sviluppo di un setup di rivelatori tramite l’utilizzo di ARBY. Partendo da una configurazione di rivelatori ben nota, il cluster Euroball, è stato modellato un array di rivelatori. L'idea era modellare un singolo cristallo in grado di rispondere alle principali esigenze del metodo: una buona risoluzione nella parte molto bassa dell'energia dello spettro (da 10 a 100 keV) e una buona efficienza nella parte ad alta energia (< 1 MeV). Dalle simulazioni, l'approccio migliore è stato rappresentato da un array di rivelatori composto da cristalli segmentati, come riportato nel Capitolo 3. ARBY non è stato utilizzato solo per la modellazione, ma anche per replicare esperimenti con muoni negativi. I risultati, riportati nel Capitolo 4, mostrano uno strumento che non è ancora affidabile per la generazione di raggi X dopo l'interazione del muone con la materia, a causa di transizioni mancanti negli spettri generati. Una soluzione a questo problema potrebbe essere rappresentata MuDirac, un software per il calcolo delle transizioni energetiche dei muoni, sviluppato dal dipartimento di calcolo scientifico del UKRI e da ISIS. L'output del software MuDirac è stato implementato in ARBY e il risultato preliminare dell'approccio ha mostrato un miglioramento degli spettri simulati. Infine, nel Capitolo 5, lo strumento ARBY è stato utilizzato per la valutazione di sottili strati d'oro in campioni di studio e campioni storici. Per eseguire una caratterizzazione degli strati, ARBY è stato utilizzato insieme al software SRIM-TRIM: utilizzando le informazioni sul numero di muoni fermati in uno strato dato, le simulazioni sono state confrontate con i dati provenienti da esperimenti reali. I risultati del test su campioni standard, precedentemente caratterizzati con altri metodi, hanno testimoniato la validità dell'approccio. Pertanto, il metodo è stato infine utilizzato per la caratterizzazione della doratura di una parte del Portale del Battistero di Firenze, una formella raffigurante l'Annunciazione a Zaccaria. Diversamente dai campioni standard, lo spessore degli strati d'oro era sconosciuto: combinando i risultati della simulazione con i dati sperimentali, sono stati valutati strati di circa 16 μm per le due figure e uno strato irregolare per l'altare, dove le dimensioni dell'oro variavano da pochi micron fino a 50 μm.

(2024). Optimization of negative muon experiments for elemental analysis at the RIKEN-RAL facility. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

Optimization of negative muon experiments for elemental analysis at the RIKEN-RAL facility

CATALDO, MATTEO
2024

Abstract

Muonic Atom X-ray Emission spectroscopy (μ-XES) is a novel technique in the field of Heritage Science. The method uses beams of negative muons to probe materials: the capture process leads to the formation of the so-called ”muonic atom”. In this bound state, the muon starts to travel down to the ground state of the atom with the emission of fingerprint high-energy X-rays that can be used for elemental identification. Thanks to its remarkable penetration depth, negligible self-absorption of the emitted radiation and sensitivity to all the elements of the periodic table, the technique represents a unique approach to the study of artefacts. At the ISIS Neutron and Muon Source (UK), μ-XES is performed at Port4 of the RIKEN-RAL muon facility. Here, the instrument setup is in continuous development and one of the primary aims of the project was to provide an upgrade to the detection system. Moreover, the project focused on the development of the data analysis of negative muon data. In both cases, the work was based on the use of a Monte Carlo simulation tool called GEANT4/ARBY, developed by the INFN section of Milano Bicocca. Firstly, the ARBY tool was used to model a future instrument concept. With two different scenarios, one for an immediate update and one for a future upgrade, the work focused on the development of an ultimate detector setup. Starting from a well-known detector configuration, the Euroball cluster, a detector array was modelled. The idea was to model a single crystal able to respond to the main necessities of the method: a good resolution in the very low energy part of the spectrum (from 10 to 100 keV) and a good efficiency in the high energy part (< 1 MeV). From simulations, the best approach was represented by a detector array composedof segmented crystals, as reported in Chapter 3. The ARBY tool was not only used for modelling but also for replicating negative muon experiments. The results, reported in Chapter 4, show a tool that is not yet reliable for the generation of X-rays after the muon interaction with matter, due to missing transition in the generated spectra. A solution to this issue could be represented by a Dirac equation solver called MuDirac, developed by the UKRI scientific computing department and the ISIS muon group. The output of the MuDirac software was implemented in ARBY and the preliminary result of the approach showed an improvement of the simulated spectra. Finally, in Chapter 5 the ARBY tool was used for the assessment of thin gold layers in mockups and historic samples. To perform a characterization of the layers, ARBY was used along with the SRIM-TRIM software: by using the information on the number of muons stopped in a given layer, simulations were compared to the data coming from real experiments. The results of the test on mockup samples, which were previously characterized by other methods, testified to the goodness of the approach. Therefore, the method was finally used for the characterization of the gilding of a piece of the Baptistery gate of Florence, a formella representing the Annunciation to Zachary. Differently from mockups, here the thickness of the layers of gold was unknown: by combining the results of the simulation with the experimental data, layers of about 16μm were assessed for the two standing figures and an uneven layer for the altar, where the size of gold ranged from a few microns up to 50 μm.
CREMONESI, OLIVIERO
CLEMENZA, MASSIMILIANO
μ-XES; Archeometria; Depth profiling; SpettroscopiaMuonica; analisi elementale
μ-XES; Archaeometry; Depth profiling; muon spectroscopy; elemental analysis;
FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
Italian
9-apr-2024
36
2022/2023
open
(2024). Optimization of negative muon experiments for elemental analysis at the RIKEN-RAL facility. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_868701.pdf

accesso aperto

Descrizione: Tesi
Tipologia di allegato: Doctoral thesis
Dimensione 27.39 MB
Formato Adobe PDF
27.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/472079
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact