We prove a natural generalization of Szep’s conjecture. Given an almost simple group G with socle not isomorphic to an orthogonal group having Witt defect zero, we classify all possible group elements x, y∈ G\ { 1 } with G= NG(⟨ x⟩) NG(⟨ y⟩) , where we are denoting by NG(⟨ x⟩) and by NG(⟨ y⟩) the normalizers of the cyclic subgroups ⟨ x⟩ and ⟨ y⟩ . As a consequence of this result, we classify all possible group elements x, y∈ G\ { 1 } with G= CG(x) CG(y) .
Gill, N., Giudici, M., Spiga, P. (2024). A Generalization of Szep’s Conjecture for Almost Simple Groups. VIETNAM JOURNAL OF MATHEMATICS, 52(2), 325-359 [10.1007/s10013-023-00635-1].
A Generalization of Szep’s Conjecture for Almost Simple Groups
Spiga P.
2024
Abstract
We prove a natural generalization of Szep’s conjecture. Given an almost simple group G with socle not isomorphic to an orthogonal group having Witt defect zero, we classify all possible group elements x, y∈ G\ { 1 } with G= NG(⟨ x⟩) NG(⟨ y⟩) , where we are denoting by NG(⟨ x⟩) and by NG(⟨ y⟩) the normalizers of the cyclic subgroups ⟨ x⟩ and ⟨ y⟩ . As a consequence of this result, we classify all possible group elements x, y∈ G\ { 1 } with G= CG(x) CG(y) .File | Dimensione | Formato | |
---|---|---|---|
Gill-2024-Vietnam Journal of Mathematics-VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
553.62 kB
Formato
Adobe PDF
|
553.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.