The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of ±1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors (νe, νμ, ντ) at the level 109-1015cm-2GW-1 have been obtained in the 0.5–5 MeV neutrino energy range.
Basilico, D., Bellini, G., Benziger, J., Biondi, R., Caccianiga, B., Calaprice, F., et al. (2023). Borexino’s search for low-energy neutrinos associated with gravitational wave events from GWTC-3 database. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 83(6) [10.1140/epjc/s10052-023-11688-4].
Borexino’s search for low-energy neutrinos associated with gravitational wave events from GWTC-3 database
Guffanti, D.;
2023
Abstract
The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of ±1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors (νe, νμ, ντ) at the level 109-1015cm-2GW-1 have been obtained in the 0.5–5 MeV neutrino energy range.File | Dimensione | Formato | |
---|---|---|---|
Basilico-2023-EPJC-VoR.pdf
accesso aperto
Descrizione: This article is licensed under a Creative Commons Attribution 4.0 International License To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
801.09 kB
Formato
Adobe PDF
|
801.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.