In this paper, we investigate empirically the effect of using higher moments in portfolio allocation when parametric and nonparametric models are used. The nonparametric model considered in this paper is the sample approach; the parametric model is constructed assuming multivariate variance gamma (MVG) joint distribution for asset returns.We consider the MVG models proposed by Madan and Seneta (1990), Semeraro (2008) and Wang (2009). We perform an out-of-sample analysis comparing the optimal portfolios obtained using the MVG models and the sample approach. Our portfolio is composed of 18 assets selected from the S&P500 Index and the dataset consists of daily returns observed from 01/04/2000 to 01/09/2011.
Hitaj, A., Mercuri, L. (2013). Portfolio allocation using multivariate variance gamma models. FINANCIAL MARKETS AND PORTFOLIO MANAGEMENT, 27(1), 65-99 [10.1007/s11408-012-0202-5].
Portfolio allocation using multivariate variance gamma models
HITAJ, ASMERILDA
;
2013
Abstract
In this paper, we investigate empirically the effect of using higher moments in portfolio allocation when parametric and nonparametric models are used. The nonparametric model considered in this paper is the sample approach; the parametric model is constructed assuming multivariate variance gamma (MVG) joint distribution for asset returns.We consider the MVG models proposed by Madan and Seneta (1990), Semeraro (2008) and Wang (2009). We perform an out-of-sample analysis comparing the optimal portfolios obtained using the MVG models and the sample approach. Our portfolio is composed of 18 assets selected from the S&P500 Index and the dataset consists of daily returns observed from 01/04/2000 to 01/09/2011.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.