The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. In this talk we describe in detail a comprehensive assessment of JUNO’s potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is achievable with optimized background reduction strategies. With ten years of data taking, about 60,000 signal and 30,000 background events are expected. This leads to a simultaneous measurement of sin2 θ12and Δm212 using reactor antineutrinos and solar neutrinos in the JUNO detector. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter. If Δm212 = 4.8 × 10−5(7.5 × 10−5eV2), JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3σ (2σ) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure Δm212 using 8B solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of reported by solar neutrino experiments and the KamLAND experiment.

Zhao, J., Abusleme, A., Adam, T., Ahmad, S., Ahmed, R., Aiello, S., et al. (2022). Feasibility and physics potential of detecting 8B solar neutrinos at JUNO. Intervento presentato a: 37th International Cosmic Ray Conference (ICRC2021), Online [10.22323/1.395.1229].

Feasibility and physics potential of detecting 8B solar neutrinos at JUNO

Barresi A.;Chiesa D.;Nastasi M.;Previtali E.;Sisti M.;
2022

Abstract

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. In this talk we describe in detail a comprehensive assessment of JUNO’s potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is achievable with optimized background reduction strategies. With ten years of data taking, about 60,000 signal and 30,000 background events are expected. This leads to a simultaneous measurement of sin2 θ12and Δm212 using reactor antineutrinos and solar neutrinos in the JUNO detector. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter. If Δm212 = 4.8 × 10−5(7.5 × 10−5eV2), JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3σ (2σ) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure Δm212 using 8B solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of reported by solar neutrino experiments and the KamLAND experiment.
slide + paper
Neutrino, Nuclear Reactor
English
37th International Cosmic Ray Conference (ICRC2021)
2021
2022
395
1229
https://pos.sissa.it/395/1229/pdf
open
Zhao, J., Abusleme, A., Adam, T., Ahmad, S., Ahmed, R., Aiello, S., et al. (2022). Feasibility and physics potential of detecting 8B solar neutrinos at JUNO. Intervento presentato a: 37th International Cosmic Ray Conference (ICRC2021), Online [10.22323/1.395.1229].
File in questo prodotto:
File Dimensione Formato  
10281-466941_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/466941
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact