We study a nonlocal parametric problem driven by the fractional Laplacian operator combined with a Kirchhoff-type coefficient and involving a critical nonlinearity term in the Sobolev embedding sense. Our approach is of variational and topological nature. The obtained results can be viewed as a nontrivial extension to the nonlocal setting of some recent contributions already present in the literature.

Appolloni, L., Molica Bisci, G., Secchi, S. (2021). On critical Kirchhoff problems driven by the fractional Laplacian. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 60(6) [10.1007/s00526-021-02065-8].

On critical Kirchhoff problems driven by the fractional Laplacian

Appolloni L.;Secchi S.
2021

Abstract

We study a nonlocal parametric problem driven by the fractional Laplacian operator combined with a Kirchhoff-type coefficient and involving a critical nonlinearity term in the Sobolev embedding sense. Our approach is of variational and topological nature. The obtained results can be viewed as a nontrivial extension to the nonlocal setting of some recent contributions already present in the literature.
Articolo in rivista - Articolo scientifico
Fractional laplacian
English
2021
60
6
209
open
Appolloni, L., Molica Bisci, G., Secchi, S. (2021). On critical Kirchhoff problems driven by the fractional Laplacian. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 60(6) [10.1007/s00526-021-02065-8].
File in questo prodotto:
File Dimensione Formato  
10281-466822_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 396.35 kB
Formato Adobe PDF
396.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/466822
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
Social impact