We introduce a nonconforming virtual element method for the Poisson problem on domains with fixed curved boundary and internal interfaces. We prove arbitrary order optimal convergence in the energy and L2 norms, and assess the theoretical results with numerical experiments. The proposed scheme has the upside that it can be designed and analyzed in any dimension.
Beirao da Veiga, L., Liu, Y., Mascotto, L., Russo, A. (2024). The nonconforming virtual element method with curved edges. JOURNAL OF SCIENTIFIC COMPUTING, 99(1 (April 2024)) [10.1007/s10915-023-02441-w].
The nonconforming virtual element method with curved edges
Beirao da Veiga, L.;Mascotto, L.;Russo, A.
2024
Abstract
We introduce a nonconforming virtual element method for the Poisson problem on domains with fixed curved boundary and internal interfaces. We prove arbitrary order optimal convergence in the energy and L2 norms, and assess the theoretical results with numerical experiments. The proposed scheme has the upside that it can be designed and analyzed in any dimension.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Beirão da Veiga-2024-Journal of Scientific Computing-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Beirão da Veiga-2024-Arxiv-PrePrint.pdf
accesso aperto
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Creative Commons
Dimensione
598.49 kB
Formato
Adobe PDF
|
598.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.