We introduce a nonconforming virtual element method for the Poisson problem on domains with fixed curved boundary and internal interfaces. We prove arbitrary order optimal convergence in the energy and L2 norms, and assess the theoretical results with numerical experiments. The proposed scheme has the upside that it can be designed and analyzed in any dimension.

Beirao da Veiga, L., Liu, Y., Mascotto, L., Russo, A. (2024). The nonconforming virtual element method with curved edges. JOURNAL OF SCIENTIFIC COMPUTING, 99(1 (April 2024)) [10.1007/s10915-023-02441-w].

The nonconforming virtual element method with curved edges

Beirao da Veiga, L.;Mascotto, L.;Russo, A.
2024

Abstract

We introduce a nonconforming virtual element method for the Poisson problem on domains with fixed curved boundary and internal interfaces. We prove arbitrary order optimal convergence in the energy and L2 norms, and assess the theoretical results with numerical experiments. The proposed scheme has the upside that it can be designed and analyzed in any dimension.
Articolo in rivista - Articolo scientifico
AMS 65N15; AMS 65N30; Curved domain; Nonconforming virtual element method; Optimal convergence; Polytopic mesh;
English
11-mar-2024
2024
99
1 (April 2024)
23
partially_open
Beirao da Veiga, L., Liu, Y., Mascotto, L., Russo, A. (2024). The nonconforming virtual element method with curved edges. JOURNAL OF SCIENTIFIC COMPUTING, 99(1 (April 2024)) [10.1007/s10915-023-02441-w].
File in questo prodotto:
File Dimensione Formato  
Beirão da Veiga-2024-Journal of Scientific Computing-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Beirão da Veiga-2024-Arxiv-PrePrint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 598.49 kB
Formato Adobe PDF
598.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/466142
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact