In the paper we prove two inequalities in the setting of RCD(K, ∞) spaces using similar techniques. The first one is an indeterminacy estimate involving the p-Wasserstein distance between the positive part and the negative part of an L∞ function and the measure of the interface between the positive part and the negative part. The second one is a conjectured lower bound on the p-Wasserstein distance between the positive and negative parts of a Laplace eigenfunction.

De Ponti, N., Farinelli, S. (2022). Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 61(4) [10.1007/S00526-022-02240-5].

Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances

De Ponti, N
;
2022

Abstract

In the paper we prove two inequalities in the setting of RCD(K, ∞) spaces using similar techniques. The first one is an indeterminacy estimate involving the p-Wasserstein distance between the positive part and the negative part of an L∞ function and the measure of the interface between the positive part and the negative part. The second one is a conjectured lower bound on the p-Wasserstein distance between the positive and negative parts of a Laplace eigenfunction.
Articolo in rivista - Articolo scientifico
wasserstein distance; indeterminacy estimate; eigenfunctions
English
5-mag-2022
2022
61
4
131
none
De Ponti, N., Farinelli, S. (2022). Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 61(4) [10.1007/S00526-022-02240-5].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/462762
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
Social impact