Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of leukemic cells between the peripheral blood and lymphoid tissues. CLL cells’ ability to adapt to external cues and reorganize their cytoskeleton enables them to recirculate between tissues, however little is known about the differences between CLL and healthy B cells (HD-BD) during these processes. Our study started from the unexplored hypothesis that the cytoskeleton might be a key actor possibly involved in CLL cells' mechanical adaptation. In this context we identify the hematopoietic lineage cell-specific protein 1 (HS1) as a perfect candidate for our studies. HS1 is the hematopoietic homologous of cortactin and is a central cytoskeletal interactor. In CLL patients its phosphorylation, and expression are putative prognostic factors. We here introduce a super-resolution approach based on single-cell 3D-STED microscopy optimized to reveal the distribution of endogenous HS1 in HD-B and CLL primary cells. Our study shows that endogenous HS1 in primary cells and in MEC1 cells (CLL cell line), is organized in a nanocluster-like structure all over the extranuclear body, with a correlation between HS1 clustering and CLL patients’ prognosis. Using 3D reconstruction, we observed that HS1 nanoclusters form bulky assemblies at the bottom of the cell (adhesive side), especially in those with adverse outcomes, suggesting the need for its recruitment for cell adhesion. This observation agrees with a phasor-FLIM-FRET, and STED colocalization analysis of HS1 and vimentin, an intermediate filament involved in focal adhesion assembly, which showed an increased interaction at the basal site of the cells. Altogether these results enable for the first time the discrimination of CLL patients based on a single protein organization and suggest the presence of an altered cytoskeleton in CLL cells as compared to HD-B cells. Based on this evidence, we questioned if the organization of CLL cells cytoskeleton may affect their mechanical properties, considering that the cytoskeleton is one of the major complex involved in force transmission. To investigate this point, we dissected, in a single-cell analysis, the actomyosin complex organization in primary CLL and HD-B cells, exploiting STED. We demonstrated that CLL cells have a specific actomyosin complex organization, with longer and more branched actin filaments as compared to HD-B cells. Moreover, we suggest that the contractility of the actomyosin complex in CLL is reduced, possibly due to the low colocalization level that we detect, between actin and myosin proteins. By complementary approaches using atomic force microscopy and real-time deformability, we measured cellular mechanical properties, confirming the clear differences between CLL and HD-B cells from a mechanical perspective. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton’s tyrosine kinase inhibitors as Ibrutinib. We found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. Further, we validate this finding in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. In parallel, we studied the mechanical properties of tissue-resident CLL cells, showing a persistent stiffening as compared to those from peripheral blood. We hypothesize that resistance to ibrutinib might be affected by the mechanical properties of the resident CLL cells by limiting their mobilization from the tissue, where they possibly lurk during therapy. Altogether these data suggest that CLL cells’ mechanical properties are linked to their actin cytoskeleton, possibly involving also HS1 protein, and that its organization might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target.

La leucemia linfatica cronica (CLL), è una patologia incurabile caratterizzata da un intenso traffico di cellule leucemiche tra il sangue periferico e gli organi linfatici. Durante questo ricircolo le cellule di CLL si adattano alle condizioni ambientali riarrangiando il loro citoscheletro, tuttavia, le differenze fra le cellule di CLL e quelle sane non sono note. La nostra ipotesi prevede che il citoscheletro potrebbe essere coinvolto nell’adattamento meccanico delle cellule. In questo contesto abbiamo identificato la proteina HS1 come candidato. HS1 è l’omologo ematopoietico di cortactin, interagisce con il citoscheletro e inoltre nei pazienti di CLL è identificato come un fattore prognostico. Per studiarla abbiamo introdotto un’analisi basata su una tecnica di super risoluzione confocale (STED), ottimizzata allo scopo di visualizzare e quantificare la distribuzione di HS1 in cellule primarie di pazienti con la CLL e donatori sani (HD-B). Dalle analisi abbiamo rilevato che HS1 è organizzato in nanocluster in tutto il volume extra-nucleare della cellula, inoltre la sua organizzazione correla con la prognosi dei pazienti con CLL. Attraverso ricostruzioni 3D dell’intera cellula, abbiamo rilevato la presenza di grossi assembramenti di HS1 nella regione di adesione, condizione particolarmente evidente nelle cellule di pazienti con cattiva prognosi. Questa organizzazione suggerisce la necessità di reclutare HS1 nelle adesioni focali. A questo scopo abbiamo quantificato il livello di interazione tra HS1 e la vimentina, un filamento intermedio coinvolto nella formazione di queste strutture sfruttando la STED e la phasor-FLIM-FRET. Questi approcci ci hanno consentito di identificare un aumento nell’interazione delle due proteine nella regione basale, a conferma della nostra ipotesi. Nel loro insieme, questo studio ci ha consentito di dimostrare che i pazienti con CLL possono essere classificati in base all’organizzazione di una singola proteina e inoltre ci suggerisce la presenza di un citoscheletro alterato nelle cellule di CLL rispetto alla loro controparte sana. Basandosi su queste evidenze, ci siamo interrogati su come l'organizzazione citoscheletrica delle CLL, potrebbe alterare le loro proprietà meccaniche, tenendo in considerazione il ruolo centrale del citoscheletro nella trasmissione della forza. Per indagare questo punto, abbiamo studiato la struttura del complesso dell’actina-miosina, osservando che nelle CLL primarie l’actina presenta filamenti più lunghi e più ramificati rispetto alle sane, ed un minor livello di colocalizzazione tra actina e miosina, con una possibile conseguente diminuzione della contrattilità della struttura. Utilizzando approcci complementari, abbiamo misurato le proprietà meccaniche delle cellule, confermando le differenze tra le due popolazioni. Per valutare l’importanza clinica di questi risultati, abbiamo trattato in vitro le cellule di CLL e HD-B con un inibitore della Bruton’s tyrosine kinase come ibrutinib. Per la prima volta abbiamo osservato che questo farmaco è in grado di restaurare le proprietà meccaniche fisiologiche delle cellule di CLL e che inoltre è in grado di attivare il complesso dell’actina-miosina, questo risultato è stato confermato anche in vivo in cellule di pazienti che sussumono ibrutinib. Inoltre, abbiamo deciso di quantificare anche le proprietà meccaniche delle CLL provenienti da tessuti solidi, che hanno dimostrato essere più rigide rispetto a quelle isolate dal sangue periferico. Questo risultato ci ha permesso di ipotizzare che i meccanismi di resistenza di ibrutinib potrebbero dipendere anche dalla proprietà meccaniche delle cellule che risiedono nei tessuti. In generale, questi dati suggeriscono che le proprietà meccaniche delle CLL sono connesse con la struttura citoscheletrica dell’actina e che potrebbero essere anche coinvolte in meccanismi di resistenza alle terapie.

(2024). Dissecting the role of HS1 protein in Chronic lymphocytic leukemia: a potential hub molecule between the cytoskeleton and cell mechanics. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

Dissecting the role of HS1 protein in Chronic lymphocytic leukemia: a potential hub molecule between the cytoskeleton and cell mechanics

SAMPIETRO, MARTA
2024

Abstract

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of leukemic cells between the peripheral blood and lymphoid tissues. CLL cells’ ability to adapt to external cues and reorganize their cytoskeleton enables them to recirculate between tissues, however little is known about the differences between CLL and healthy B cells (HD-BD) during these processes. Our study started from the unexplored hypothesis that the cytoskeleton might be a key actor possibly involved in CLL cells' mechanical adaptation. In this context we identify the hematopoietic lineage cell-specific protein 1 (HS1) as a perfect candidate for our studies. HS1 is the hematopoietic homologous of cortactin and is a central cytoskeletal interactor. In CLL patients its phosphorylation, and expression are putative prognostic factors. We here introduce a super-resolution approach based on single-cell 3D-STED microscopy optimized to reveal the distribution of endogenous HS1 in HD-B and CLL primary cells. Our study shows that endogenous HS1 in primary cells and in MEC1 cells (CLL cell line), is organized in a nanocluster-like structure all over the extranuclear body, with a correlation between HS1 clustering and CLL patients’ prognosis. Using 3D reconstruction, we observed that HS1 nanoclusters form bulky assemblies at the bottom of the cell (adhesive side), especially in those with adverse outcomes, suggesting the need for its recruitment for cell adhesion. This observation agrees with a phasor-FLIM-FRET, and STED colocalization analysis of HS1 and vimentin, an intermediate filament involved in focal adhesion assembly, which showed an increased interaction at the basal site of the cells. Altogether these results enable for the first time the discrimination of CLL patients based on a single protein organization and suggest the presence of an altered cytoskeleton in CLL cells as compared to HD-B cells. Based on this evidence, we questioned if the organization of CLL cells cytoskeleton may affect their mechanical properties, considering that the cytoskeleton is one of the major complex involved in force transmission. To investigate this point, we dissected, in a single-cell analysis, the actomyosin complex organization in primary CLL and HD-B cells, exploiting STED. We demonstrated that CLL cells have a specific actomyosin complex organization, with longer and more branched actin filaments as compared to HD-B cells. Moreover, we suggest that the contractility of the actomyosin complex in CLL is reduced, possibly due to the low colocalization level that we detect, between actin and myosin proteins. By complementary approaches using atomic force microscopy and real-time deformability, we measured cellular mechanical properties, confirming the clear differences between CLL and HD-B cells from a mechanical perspective. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton’s tyrosine kinase inhibitors as Ibrutinib. We found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. Further, we validate this finding in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. In parallel, we studied the mechanical properties of tissue-resident CLL cells, showing a persistent stiffening as compared to those from peripheral blood. We hypothesize that resistance to ibrutinib might be affected by the mechanical properties of the resident CLL cells by limiting their mobilization from the tissue, where they possibly lurk during therapy. Altogether these data suggest that CLL cells’ mechanical properties are linked to their actin cytoskeleton, possibly involving also HS1 protein, and that its organization might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target.
MANTEGAZZA, FRANCESCO
Leucemia; Cellule B; Citoscheletro; Meccanobiologia; Target therapy
Leukemia; B cells; Cytoskeleton; Mechanobiology; Target therapy
BIO/13 - BIOLOGIA APPLICATA
English
26-feb-2024
36
2022/2023
embargoed_20250226
(2024). Dissecting the role of HS1 protein in Chronic lymphocytic leukemia: a potential hub molecule between the cytoskeleton and cell mechanics. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_792480.pdf

embargo fino al 26/02/2025

Descrizione: Tesi finale revisionata
Tipologia di allegato: Doctoral thesis
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/461782
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact