Chromatin three-dimensional (3D) organization inside the cell nucleus results in the separation of active and inactive chromatin compartments. These are driven by the local concentration of genomic domains with similar transcriptional activity and epigenetic features, as well as the local enrichment of their associated proteins leading to the formation of distinct subnuclear structures. The reference genomics techniques to map chromatin 3D architecture are based on the quantification of contact frequencies between genomic loci, that doesn’t’ detect chromatin compartments relocation across subnuclear regions. Chromatin domains spatially located in the same 3D nuclear neighbourhood are exposed to the same biochemical milieu, thus sharing similar solubility. Based on this rationale, we developed a new experimental technique, the 4fSAMMY-seq, paired with tailored bioinformatic data analysis methods to map chromatin accessibility, starting from the biochemical properties of genomic domains and using as little as 10,000 cells. We can extract information on the linear segmentation of euchromatic and heterochromatic genomic regions, as well as on their 3D segregation in active and inactive chromatin compartments. With 4fSAMMY-seq we can recapitulate in a single experiment the characteristic properties of the distinct chromatin states, including the highly dynamic Polycomb compartment. The tridimensional chromatin structure is fundamental for the correct regulation of the genome function. Nuclear lamins are key players of the genome folding and participate in the maintenance of the chromatin structure. Lamins are divided in A-type and B-types, and have a plethora of functions in the nuclei, from mechanical properties, as resistance to forces and mechanotransduction, to the radial organization of chromatin in the nucleus. Lamin A and B interact with chromatin in specific heterochromatic regions called lamina associated domains (LADs). These domains are positioned in the periphery of the nucleus whereas the portion of chromosomes not attached to the lamina tend to go in the center where the euchromatin is preferentially found. However, the role of A and B lamins is different in the nuclei as evidenced by effects of genetic mutations. Using SAMMY-seq, we have previously characterized the effect of the mutated form of lamin A, progerin, on heterochromatin structure: in early passages fibroblasts from progeric patients we found a LAD remodeling with a detachment from the nuclear periphery. This early event leads to a deregulation of bivalent genes. Here we systematically analyze the conformation of both euchromatin and heterochromatin in the absence of lamin A or lamin B. Hutchinson-Gilford progeria syndrome (HGPS) is a rare, autosomic dominant human systemic disease, caused by a point mutation in Lamin A gene. Due to its key role in the control of genome architecture, it is not surprising that the structural organization and epigenetic regulation of chromatin are altered in HGPS. However, molecular studies are often focused on the terminal stage of HGPS cell life, when primary and secondary events are already overlapping. Among the epigenetic mechanisms, we are interested in the genome tridimensional structure, a key player in genome function regulation, directly regulated by Lamin A. We used the Sequential Analysis of MacroMolecules accessibilitY (SAMMY- seq), invented in our laboratory to systematically dissect chromatin conformation alterations of fibroblasts, endothelial cells and Satellite Muscular Stem cells in the HGPS mouse model at different ages. We found a cell-specific chromatin compartmentalization that is altered already in early stages of HGPS postnatal growth. Our data, showing profound changes of compartmentalization, support the hypothesis that the disease mainly affect the heterochromatin and that this alteration propagates toward euchromatin determining genome dysfunctions.

L'organizzazione tridimensionale (3D) della cromatina all'interno del nucleo cellulare determina la separazione dei compartimenti della cromatina attiva e inattiva. Questi sono guidati dalla concentrazione locale di domini genomici con attività trascrizionale e caratteristiche epigenetiche simili, nonché dall’arricchimento locale delle proteine associate che portano alla formazione di strutture subnucleari distinte. Le tecniche genomiche di riferimento per mappare l’architettura 3D della cromatina si basano sulla quantificazione delle frequenze di contatto tra i loci genomici, che non rilevano la rilocazione dei compartimenti della cromatina attraverso le regioni subnucleari. I domini di cromatina situati spazialmente nello stesso quartiere nucleare 3D sono esposti allo stesso ambiente biochimico, condividendo così una solubilità simile. Sulla base di questa logica, abbiamo sviluppato una nuova tecnica sperimentale, la 4fSAMMY-seq, abbinata a metodi di analisi dei dati bioinformatici su misura per mappare l'accessibilità della cromatina, partendo dalle proprietà biochimiche dei domini genomici e utilizzando appena 10.000 cellule. Possiamo estrarre informazioni sulla segmentazione lineare delle regioni genomiche eucromatiche ed eterocromatiche, nonché sulla loro segregazione 3D in compartimenti cromatinici attivi e inattivi. Con 4fSAMMY-seq possiamo ricapitolare in un singolo esperimento le proprietà caratteristiche dei distinti stati della cromatina, incluso il compartimento Polycomb altamente dinamico. La struttura tridimensionale della cromatina è fondamentale per la corretta regolazione della funzione del genoma. Le lamine nucleari sono attori chiave del ripiegamento del genoma e partecipano al mantenimento della struttura della cromatina. Le lamine si dividono in tipo A e tipo B, e hanno una pletora di funzioni nei nuclei, dalle proprietà meccaniche, come resistenza alle forze e alla meccanotrasduzione, all'organizzazione radiale della cromatina nel nucleo. La lamina A e B interagiscono con la cromatina in specifiche regioni eterocromatiche chiamate domini associati alla lamina (LAD). Questi domini sono posizionati alla periferia del nucleo mentre la porzione di cromosomi non attaccata alla lamina tende ad andare al centro dove si trova preferenzialmente l'eucromatina. Tuttavia, il ruolo delle lamine A e B è diverso nei nuclei, come evidenziato dagli effetti delle mutazioni genetiche. Utilizzando SAMMY-seq, abbiamo precedentemente caratterizzato l'effetto della forma mutata della lamina A, la progerina, sulla struttura dell'eterocromatina: nei primi passaggi dei fibroblasti di pazienti progerici abbiamo riscontrato un rimodellamento della LAD con un distacco dalla periferia nucleare. Questo evento precoce porta ad una deregolamentazione dei geni bivalenti. Qui analizziamo sistematicamente la conformazione cromatinica in assenza della lamina A o della lamina B. La struttura tridimensionale della cromatina è fondamentale per la corretta regolazione della funzione del genoma. Le lamine nucleari sono attori chiave del ripiegamento del genoma e partecipano al mantenimento della struttura della cromatina. Le lamine si dividono in tipo A e tipo B, e hanno una pletora di funzioni nei nuclei, dalle proprietà meccaniche, come resistenza alle forze e alla meccanotrasduzione, all'organizzazione radiale della cromatina nel nucleo. La lamina A e B interagiscono con la cromatina in specifiche regioni eterocromatiche chiamate domini associati alla lamina (LAD). Questi domini sono posizionati alla periferia del nucleo mentre la porzione di cromosomi non attaccata alla lamina tende ad andare al centro dove si trova preferenzialmente l'eucromatina. Qui analizziamo sistematicamente la conformazione sia dell'eucromatina che dell'eterocromatina in assenza della lamina A o della lamina B.

(2024). Chromatin conformation dynamics in cellular senescence. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

Chromatin conformation dynamics in cellular senescence

DI PATRIZIO SOLDATESCHI, EMANUELE
2024

Abstract

Chromatin three-dimensional (3D) organization inside the cell nucleus results in the separation of active and inactive chromatin compartments. These are driven by the local concentration of genomic domains with similar transcriptional activity and epigenetic features, as well as the local enrichment of their associated proteins leading to the formation of distinct subnuclear structures. The reference genomics techniques to map chromatin 3D architecture are based on the quantification of contact frequencies between genomic loci, that doesn’t’ detect chromatin compartments relocation across subnuclear regions. Chromatin domains spatially located in the same 3D nuclear neighbourhood are exposed to the same biochemical milieu, thus sharing similar solubility. Based on this rationale, we developed a new experimental technique, the 4fSAMMY-seq, paired with tailored bioinformatic data analysis methods to map chromatin accessibility, starting from the biochemical properties of genomic domains and using as little as 10,000 cells. We can extract information on the linear segmentation of euchromatic and heterochromatic genomic regions, as well as on their 3D segregation in active and inactive chromatin compartments. With 4fSAMMY-seq we can recapitulate in a single experiment the characteristic properties of the distinct chromatin states, including the highly dynamic Polycomb compartment. The tridimensional chromatin structure is fundamental for the correct regulation of the genome function. Nuclear lamins are key players of the genome folding and participate in the maintenance of the chromatin structure. Lamins are divided in A-type and B-types, and have a plethora of functions in the nuclei, from mechanical properties, as resistance to forces and mechanotransduction, to the radial organization of chromatin in the nucleus. Lamin A and B interact with chromatin in specific heterochromatic regions called lamina associated domains (LADs). These domains are positioned in the periphery of the nucleus whereas the portion of chromosomes not attached to the lamina tend to go in the center where the euchromatin is preferentially found. However, the role of A and B lamins is different in the nuclei as evidenced by effects of genetic mutations. Using SAMMY-seq, we have previously characterized the effect of the mutated form of lamin A, progerin, on heterochromatin structure: in early passages fibroblasts from progeric patients we found a LAD remodeling with a detachment from the nuclear periphery. This early event leads to a deregulation of bivalent genes. Here we systematically analyze the conformation of both euchromatin and heterochromatin in the absence of lamin A or lamin B. Hutchinson-Gilford progeria syndrome (HGPS) is a rare, autosomic dominant human systemic disease, caused by a point mutation in Lamin A gene. Due to its key role in the control of genome architecture, it is not surprising that the structural organization and epigenetic regulation of chromatin are altered in HGPS. However, molecular studies are often focused on the terminal stage of HGPS cell life, when primary and secondary events are already overlapping. Among the epigenetic mechanisms, we are interested in the genome tridimensional structure, a key player in genome function regulation, directly regulated by Lamin A. We used the Sequential Analysis of MacroMolecules accessibilitY (SAMMY- seq), invented in our laboratory to systematically dissect chromatin conformation alterations of fibroblasts, endothelial cells and Satellite Muscular Stem cells in the HGPS mouse model at different ages. We found a cell-specific chromatin compartmentalization that is altered already in early stages of HGPS postnatal growth. Our data, showing profound changes of compartmentalization, support the hypothesis that the disease mainly affect the heterochromatin and that this alteration propagates toward euchromatin determining genome dysfunctions.
LANZUOLO, CHIARA
3D chromatin; bioinformatics; senescence; progeria; HGPS
3D chromatin; bioinformatics; senescence; progeria; HGPS
BIO/11 - BIOLOGIA MOLECOLARE
English
26-feb-2024
36
2022/2023
open
(2024). Chromatin conformation dynamics in cellular senescence. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_875632.pdf

accesso aperto

Descrizione: Chromatin conformation dynamics in cellular senescence
Tipologia di allegato: Doctoral thesis
Dimensione 15.27 MB
Formato Adobe PDF
15.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/461765
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact