It recently became evident that tumor can be described as a metabolic disease, in which cancer cells exploit distinct metabolic and energy generating pathways compared to healthy cells. Starting almost a century ago from the first studies on glucose addiction of cancer cells, it is now established that the deregulation of cellular metabolism is a core hallmark of cancer. Not only glycolysis, but also mitochondrial metabolism is functionally active in cancer cells to provide energy via oxidative phosphorylation (OXPHOS) and metabolites via tricarboxylic acid cycle. Compelling evidence sustains that ovarian cancer (OC), target of my interest, displays high metabolic heterogeneity, with tumors depending on either glycolysis or OXPHOS for energy production. In this context, my work has been focused on dissecting the role of mitochondrial oxidative metabolism in ovarian cancer. In particular, I explored if it might be exploited to constrain tumor progression and increase the responsiveness to anti-cancer therapies. The studies reported in my thesis uncovered that high expression of the transcriptional coactivators PGC-1α and PGC-1β identifies a subset of OC that possesses a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced TCA cycling, and elevated mitochondrial activity, which renders them sensitive to inhibition of OXPHOS (IACS-010759). Moreover, genetic approaches indicated for the first time that PGC-1α and PGC-1β are not only reliable biomarkers of response to IACS-010759, but that they are also direct regulators of OXPHOS in OC. The clinical relevance of these findings was supported by analysis of OC patient datasets, which showed that 25% of all cases displayed high PGC-1α and PGC-1β expression along with an activated mitochondrial gene program and could represent a subset of patients eligible for treatment with OXPHOS inhibitors, whenever available in the clinical setting. It was lately suggested that the metabolic profile of OC may influence its sensitivity to standard-of-care therapies. Recently, OC treatment has been improved by the introduction of PARP inhibitors (PARPi), small molecules designed to exploit the concept of synthetic lethality. PARPi target and kill cancer cells characterized by homologous recombination (HR) deficiencies (HRD), i.e. not able to repair DNA damages, while having little to no effect on HR proficient (HRP) healthy and cancerous cells. Despite the unprecedented benefit observed in some OC patient groups, not all patients are eligible for PARPi treatment, and therapy failure is common due to either intrinsic or acquired resistance. The work presented in this thesis revealed that OXPHOS inhibition with IACS-010759 increases the sensitivity of HRP OC to the treatment with the PARPi olaparib, while having no effect on healthy HRP human cells. More in detail, through a genetic approach (PGC-1β silencing), I demonstrated a causal effect of mitochondrial metabolism in determining sensitivity to multiple PARPi and that this is mediated through the impairment of the ability of HR proficient OC cells to repair drug-induced DNA damages. The relevance of this observation was further confirmed using preclinical models, which established that pharmacological impairment of oxidative metabolism sensitizes non-responsive models to the treatment with olaparib paving the way for the development of new approaches of synthetic lethality aimed at expanding the applicability of such therapy beyond HRD and at aiding in the management of PARPi resistance.
Recentemente il cancro è stato recentemente descritto come una malattia metabolica in cui le cellule tumorali sfruttano percorsi metabolici differenti rispetto alle corrispettive cellule sane per sostenere la loro elevata proliferazione, e di conseguenza la crescita del tumore stesso. La deregolazione del metabolismo energetico è stata riconosciuta come una caratteristica distintiva fondamentale del cancro. Diversi studi hanno difatti dimostrato come non solo la glicolisi, ma anche il metabolismo mitocondriale sia funzionalmente attivo nelle cellule tumorali e venga sfruttato per generare sia energia, tramite fosforilazione ossidativa, sia metaboliti, tramite il ciclo di Krebs. Diversi studi hanno evidenziato come il carcinoma ovarico, oggetto di questa tesi, sia metabolicamente eterogeneo, con tumori che dipendono maggiormente dalla glicolisi o dalla fosforilazione ossidativa per la produzione di energia. In questo contesto, lo scopo del mio progetto di dottorato è stato lo studio del ruolo del metabolismo mitocondriale nella progressione del carcinoma ovarico e nella risposta alle terapie. Le evidenze raccolte nella mia tesi hanno permesso di rivelare come l'elevata espressione dei co-attivatori trascrizionali PGC-1α e PGC-1β identifichi un sottogruppo di neoplasie che possiede uno specifico profilo trascrizionale associato all’aumento del numero dei mitocondri, della frequenza del ciclo di Krebs e dell’attività mitocondriale. Questi tumori risultano essere dipendenti dal metabolismo mitocondriale e di conseguenza molto sensibili all'inibizione della fosforilazione ossidativa con IACS-010759. I dati ottenuti rivelano che PGC-1α e PGC-1β non sono solo biomarcatori predittivi della risposta a tale inibitore, ma anche diretti regolatori della biogenesi e dell’attività dei mitocondri nelle cellule di carcinoma ovarico. La rilevanza traslazionale di queste osservazioni è sottolineata da studi trascrizionali che hanno dimostrato come circa il 25% dei pazienti presenti un'elevata espressione di PGC-1α e PGC-1β e un profilo trascrizionale che li candida ad essere idonei a beneficiare dal trattamento con gli inibitori della fosforilazione ossidativa, nel momento in cui saranno disponibili in clinica. Il trattamento del carcinoma ovarico è stato recentemente trasformato dall'introduzione degli inibitori di PARP. Questi farmaci sono progettati in modo da sfruttare il concetto di letalità sintetica per indurre selettivamente la morte di cellule tumorali che presentano difetti nel meccanismo di riparo del DNA ricombinazione omologa, senza avere effetto sulle cellule sane e cancerose non difettive. Nonostante questo trattamento abbia dato benefici senza precedenti in alcuni gruppi di pazienti, non tutti risultano essere idonei alla terapia con gli inibitori di PARP, ed essa è limitata dai casi di resistenza intrinseca o acquisita. Il lavoro riportato in questa tesi mostra che IACS-010759 aumenta la sensibilità di carcinomi ovarici non difettivi nella ricombinazione omologa al trattamento con l’inibitore di PARP olaparib, pur non avendo alcun effetto sulle cellule umane sane. Approcci genetici (silenziamento di PGC-1β) hanno successivamente dimostrato che l'attività mitocondriale influenza la sensibilità agli inibitori di PARP mediante il ruolo che svolge nel riparo dei danni al DNA indotti dagli inibitori di PARP. La rilevanza di questa osservazione è stata confermata in studi preclinici in cui è stata valutata l’attività della combinazione di inibitori di OXPHOS e PARP. I risultati dimostrano che IACS-010759 sensibilizza modelli non responsivi al trattamento con olaparib, aprendo la strada a nuovi approcci di letalità sintetica per espandere l'applicabilità di tale terapia ai pazienti oggi non considerati idonei e per la gestione della resistenza agli inibitori di PARP.
(2024). The role of mitochondrial metabolism in ovarian cancer progression and drug response. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
The role of mitochondrial metabolism in ovarian cancer progression and drug response
FORMENTI, LAURA
2024
Abstract
It recently became evident that tumor can be described as a metabolic disease, in which cancer cells exploit distinct metabolic and energy generating pathways compared to healthy cells. Starting almost a century ago from the first studies on glucose addiction of cancer cells, it is now established that the deregulation of cellular metabolism is a core hallmark of cancer. Not only glycolysis, but also mitochondrial metabolism is functionally active in cancer cells to provide energy via oxidative phosphorylation (OXPHOS) and metabolites via tricarboxylic acid cycle. Compelling evidence sustains that ovarian cancer (OC), target of my interest, displays high metabolic heterogeneity, with tumors depending on either glycolysis or OXPHOS for energy production. In this context, my work has been focused on dissecting the role of mitochondrial oxidative metabolism in ovarian cancer. In particular, I explored if it might be exploited to constrain tumor progression and increase the responsiveness to anti-cancer therapies. The studies reported in my thesis uncovered that high expression of the transcriptional coactivators PGC-1α and PGC-1β identifies a subset of OC that possesses a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced TCA cycling, and elevated mitochondrial activity, which renders them sensitive to inhibition of OXPHOS (IACS-010759). Moreover, genetic approaches indicated for the first time that PGC-1α and PGC-1β are not only reliable biomarkers of response to IACS-010759, but that they are also direct regulators of OXPHOS in OC. The clinical relevance of these findings was supported by analysis of OC patient datasets, which showed that 25% of all cases displayed high PGC-1α and PGC-1β expression along with an activated mitochondrial gene program and could represent a subset of patients eligible for treatment with OXPHOS inhibitors, whenever available in the clinical setting. It was lately suggested that the metabolic profile of OC may influence its sensitivity to standard-of-care therapies. Recently, OC treatment has been improved by the introduction of PARP inhibitors (PARPi), small molecules designed to exploit the concept of synthetic lethality. PARPi target and kill cancer cells characterized by homologous recombination (HR) deficiencies (HRD), i.e. not able to repair DNA damages, while having little to no effect on HR proficient (HRP) healthy and cancerous cells. Despite the unprecedented benefit observed in some OC patient groups, not all patients are eligible for PARPi treatment, and therapy failure is common due to either intrinsic or acquired resistance. The work presented in this thesis revealed that OXPHOS inhibition with IACS-010759 increases the sensitivity of HRP OC to the treatment with the PARPi olaparib, while having no effect on healthy HRP human cells. More in detail, through a genetic approach (PGC-1β silencing), I demonstrated a causal effect of mitochondrial metabolism in determining sensitivity to multiple PARPi and that this is mediated through the impairment of the ability of HR proficient OC cells to repair drug-induced DNA damages. The relevance of this observation was further confirmed using preclinical models, which established that pharmacological impairment of oxidative metabolism sensitizes non-responsive models to the treatment with olaparib paving the way for the development of new approaches of synthetic lethality aimed at expanding the applicability of such therapy beyond HRD and at aiding in the management of PARPi resistance.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_791929.pdf
embargo fino al 07/02/2027
Descrizione: Formenti Laura - 791929
Tipologia di allegato:
Doctoral thesis
Dimensione
15.72 MB
Formato
Adobe PDF
|
15.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.