Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms with variable clinical outcomes and an increased risk of progression to acute myeloid leukemia (AML). Given this heterogeneity, the use of classifications and scoring systems is of fundamental importance to identify the disease subtype and to evaluate patient’s prognosis but fails in predicting patients who will respond to hypomethylating agents (HMAs), which represent the first line treatment for high-risk MDS patients. Several studies have underlined the role of immune dysregulation in MDS pathogenesis and progression. However, immunologic information is currently omitted from risk scores because there is still no standard method for evaluating patient’s immune status. The addition of comprehensive immunologic data to prognostic models could further help to refine risk stratification and predict therapy response. In the first project included in my thesis, we took advantage of high-dimensional flow cytometry to perform a comprehensive analysis of the immunologic landscape in bone marrow (BM) and peripheral blood (PB) of 154 MDS and AML post-MDS patients, investigating T lymphocytes, Natural Killer (NK) and Myeloid cells before and after HMA treatment. We analyzed the immune cell subsets distribution and phenotype with both manual gating and Phenograph algorithm, and we implemented an unsupervised pipeline to clusterize MDS patients according to their immune features. Then, we further characterized each immunological group by integrating bulk RNA-seq data of BM CD34+ cells isolated from patients, DNA mutations and clinical data, thus performing a multi-omics analysis. In the second and third projects, we instead focused our attention on the immune characterization of MDS with dysfunction of p53 and SF3B1mut MDS, respectively, always combining immunophenotyping with transcriptomic and clinical data. Classical manual gating analysis revealed that in advanced stages of the disease both BM and PB display altered T, NK and myeloid compartments that favor tumor immune escape. The unsupervised analysis identified 5 immunological groups of MDS patients characterized by different grade of immune dysfunction, related to different prognosis and response to HMA therapy. Moreover, patients classified within the same MDS subtype or prognostic risk category were subdivided into different immunological groups, underlining the importance of immunological differences to better stratify MDS patients. RNA-seq data of blast cells revealed distinct inflammatory signatures specifically associated with the most immunologically dysfunctional groups and correlated with the loss of function of immune cells. Finally, we developed a decision tree for the automatic patient’s classification within immunological groups based on four immune populations that are easy to detect by flow cytometry with a restricted number of markers. In the second work, we found that MDS with p53 dysfunction are characterized by an immunosuppressive microenvironment and display transcriptional features that could be the primary driver of their dismal prognosis. In the third paper we demonstrated that SF3B1mut MDS are enriched in monocytes with low expression of HLA-DR molecule and that lack activated immune gene expression signatures seen in other low-risk MDS, which may reflect and contribute to a less inflammatory microenvironment in this MDS patient subgroup. Taken together, our data provide evidence that the evaluation of the immune signature in MDS patients can improve MDS classification and could help in predicting the response to HMA treatment as well as in identifying innovative and specific therapeutic targets.

Le Sindromi Mielodisplastiche (MDS) sono un gruppo eterogeneo di neoplasie mieloidi con esito clinico variabile e un aumentato rischio di progressione a Leucemia Mieloide Acuta (AML). Data la loro eterogeneità, l’uso di sistemi di classificazione e stratificazione è di fondamentale importanza per identificare il sottotipo di malattia e per valutare la prognosi dei pazienti, tuttavia, i sistemi attuali falliscono nel prevedere chi risponderà alla terapia con agenti ipometilanti (HMA). Diversi studi hanno sottolineato il ruolo della deregolazione immune nella patogenesi e progressione delle MDS. Tuttavia, l’informazione immunologica è tuttora omessa dai fattori per la stratificazione del rischio dal momento che non esiste ancora un metodo standard per la valutazione dello stato immunitario dei pazienti. L’aggiunta di dati comprensivi della funzionalità immunologica agli attuali scores potrebbe fornire un aiuto nel definire la stratificazione del rischio e nel predire la risposta ai trattamenti. Nel primo progetto, abbiamo utilizzato la tecnica di citometria a flusso per effettuare un’analisi della composizione immune di midollo (BM) e sangue periferico (PB) di 154 pazienti con MDS o AML post-MDS, investigando linfociti T, cellule Natural Killer (NK) e cellule mieloidi prima e dopo trattamento con HMA. Abbiamo analizzato la distribuzione e il fenotipo dei vari sottotipi di cellule immunitarie ed abbiamo implementato una pipeline per raggruppare i pazienti in base alle loro caratteristiche immunologiche. Dopodiché, abbiamo ulteriormente caratterizzato ogni gruppo immunologico integrando dati di bulk RNAseq provenienti dalle cellule CD34+ isolate da midollo dei pazienti, dati mutazionali e clinici, effettuando in questo modo un’analisi multi-omica. Nel secondo e terzo progetto, ci siamo invece focalizzati rispettivamente sulla caratterizzazione immunitaria delle MDS con disfunzione di p53 e delle MDS mutate nel gene SF3B1, sempre combinando i dati di immunofenotipo con trascrittomica e dati clinici. L’analisi con manual gating classico ha rivelato che gli stadi avanzati della malattia sono caratterizzati, sia nel BM che nel PB, da compartimenti T, NK e mieloide alterati che favoriscono l’evasione immunologica del tumore. Con l’analisi non supervisionata abbiamo identificato 5 gruppi immunologici di pazienti MDS, ognuno caratterizzato da un diverso grado di disfunzione immunitaria e correlato ad una differente prognosi e risposta al trattamento con ipometilanti. Inoltre, pazienti classificati all’interno dello stesso sottotipo di MDS o categoria di rischio ricadono in gruppi immunologici differenti, rafforzando l’importanza delle differenze immunitarie per una migliore stratificazione. I dati di RNAseq sui blasti hanno rivelato delle peculiarità infiammatorie specificamente associate ai gruppi immunologici più disfunzionali e che correlano con la perdita di funzione delle cellule immuni. Infine, abbiamo sviluppato un albero decisionale per l’assegnazione automatica dei pazienti ai vari gruppi, basata su quattro popolazioni immuni che sono facilmente identificabili. Nel secondo lavoro, abbiamo trovato che le MDS con disfunzione di p53 sono caratterizzate da un microambiente immunosoppressivo e mostrano caratteristiche trascrizionali che potrebbero essere la causa principale della loro prognosi infausta. Nel terzo paper abbiamo dimostrato che le MDS SF3B1mut sono arricchite in monociti con una bassa espressione di HLA-DR e privi di una espressione genica attivatoria, il che potrebbe riflettere e contribuire ad un microambiente meno infiammato in questo specifico sottotipo. Presi insieme, i nostri dati dimostrano che la valutazione della composizione e funzionalità immunitaria nei pazienti affetti da MDS può migliorarne la classificazione e aiutare a prevedere la risposta al trattamento con HMA, nonché a identificare bersagli terapeutici innovativi e specifici.

(2024). Study of the immunological landscape in Myelodysplastic Syndromes: a multi-omics approach. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

Study of the immunological landscape in Myelodysplastic Syndromes: a multi-omics approach

RIVA, ELENA
2024

Abstract

Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms with variable clinical outcomes and an increased risk of progression to acute myeloid leukemia (AML). Given this heterogeneity, the use of classifications and scoring systems is of fundamental importance to identify the disease subtype and to evaluate patient’s prognosis but fails in predicting patients who will respond to hypomethylating agents (HMAs), which represent the first line treatment for high-risk MDS patients. Several studies have underlined the role of immune dysregulation in MDS pathogenesis and progression. However, immunologic information is currently omitted from risk scores because there is still no standard method for evaluating patient’s immune status. The addition of comprehensive immunologic data to prognostic models could further help to refine risk stratification and predict therapy response. In the first project included in my thesis, we took advantage of high-dimensional flow cytometry to perform a comprehensive analysis of the immunologic landscape in bone marrow (BM) and peripheral blood (PB) of 154 MDS and AML post-MDS patients, investigating T lymphocytes, Natural Killer (NK) and Myeloid cells before and after HMA treatment. We analyzed the immune cell subsets distribution and phenotype with both manual gating and Phenograph algorithm, and we implemented an unsupervised pipeline to clusterize MDS patients according to their immune features. Then, we further characterized each immunological group by integrating bulk RNA-seq data of BM CD34+ cells isolated from patients, DNA mutations and clinical data, thus performing a multi-omics analysis. In the second and third projects, we instead focused our attention on the immune characterization of MDS with dysfunction of p53 and SF3B1mut MDS, respectively, always combining immunophenotyping with transcriptomic and clinical data. Classical manual gating analysis revealed that in advanced stages of the disease both BM and PB display altered T, NK and myeloid compartments that favor tumor immune escape. The unsupervised analysis identified 5 immunological groups of MDS patients characterized by different grade of immune dysfunction, related to different prognosis and response to HMA therapy. Moreover, patients classified within the same MDS subtype or prognostic risk category were subdivided into different immunological groups, underlining the importance of immunological differences to better stratify MDS patients. RNA-seq data of blast cells revealed distinct inflammatory signatures specifically associated with the most immunologically dysfunctional groups and correlated with the loss of function of immune cells. Finally, we developed a decision tree for the automatic patient’s classification within immunological groups based on four immune populations that are easy to detect by flow cytometry with a restricted number of markers. In the second work, we found that MDS with p53 dysfunction are characterized by an immunosuppressive microenvironment and display transcriptional features that could be the primary driver of their dismal prognosis. In the third paper we demonstrated that SF3B1mut MDS are enriched in monocytes with low expression of HLA-DR molecule and that lack activated immune gene expression signatures seen in other low-risk MDS, which may reflect and contribute to a less inflammatory microenvironment in this MDS patient subgroup. Taken together, our data provide evidence that the evaluation of the immune signature in MDS patients can improve MDS classification and could help in predicting the response to HMA treatment as well as in identifying innovative and specific therapeutic targets.
DELLA PORTA, MATTEO
Mielodisplasia; Sistema immunitario; Oncologia; Multi-omico; Ematologia
Myelodysplasia; Immune system; Oncology; Multi-omics; Hematology
MED/06 - ONCOLOGIA MEDICA
English
12-feb-2024
36
2022/2023
open
(2024). Study of the immunological landscape in Myelodysplastic Syndromes: a multi-omics approach. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_791898.pdf

accesso aperto

Descrizione: Tesi di Riva Elena - 791898
Tipologia di allegato: Doctoral thesis
Dimensione 15.83 MB
Formato Adobe PDF
15.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/459938
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact