Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the Substantia Nigra Pars Compacta, and presence of α-synuclein deposits. Neuroinflammation and mitochondrial dysfunction are two hallmarks of the disease, the former centered on the activation of microglial cells and astrocytes: secretion of proinflammatory cytokines/chemokines creates a self-sustained loop exacerbating neuronal degeneration. Impaired mitochondrial function is also a well-known mechanism of PD: inhibition of respiratory complex I, impaired ATP production, mtDNA damage, and oxidative stress are consequences and causes of neuronal loss. Nerve Growth Factor (NGF) is the prototype member of the neurotrophin family. Its activity is mediated by the Tyrosine kinase receptor A (TrkA), which plays a key role in controlling cell proliferation, survival, and differentiation, through Ras/MEK/MAPK, PI3K/Akt and PLC-γ signaling pathways. NGF binds also to p75NTR, which activates the intrinsic apoptotic pathway leading to the release of cytochrome c from mitochondria and the activation of caspase-9. NGF levels decrease in the blood and in the Substantia nigra (SN) of PD patients. To study the efficacy of NGF in PD, a mice model was used based on unilateral injection of 6-OHDA in the striatum, followed by intranasal administration of NGF. Mice were assessed for behavior (cylinder test) and IHC analysis (astrocyte and microglia markers, and TH, marker of dopaminergic neurons) on slices of the striatum and SN. NGF treatment rescued the motor impairment and dopaminergic neuron loss induced by 6OHDA injection. Moreover, NGF completely reverted astroglial activation. Activation of astrocytes, TrkA expression, and mitochondrial dysfunction were detailed on in vitro primary culture from the motor cortex and striatum in ICC and WB experiments. NGF decreased GFAP levels, as well as recovered TrkA expression and mitochondrial function assessed by live cell imaging and bioenergetics studies. Dopaminergic neurons do not express TrkA, but are responsive to fluctuations of acetylcholine (ACh) produced by cholinergic neurons in CNS. Several evidences suggest the association between the dopaminergic and cholinergic systems, the latter being highly dependent on NGF for proper function. Given this knowledge, we hypnotized an indirect protective effect of NGF on dopaminergic neurons, through cholinergic ACh release, which acts on nicotinic ACh receptors (nAChRs) expressed on dopaminergic axons. We assessed this hypothesis on neuronal cultures of cholinergic and dopaminergic neurons, respectively from the striatum and SN. Cholinergic neurons were stressed with 6OHDA and treated with NGF alone or in the presence of DHβE (inhibitor of α4β2 nAChRs). Conditioned media were transferred to dopaminergic neurons. We observed a recovery in the percentage of apoptotic cells and, most of all in TH expression in dopaminergic neurons treated with media conditioned from NGF-treated neurons, which was partially lost in the presence of DHβE. Finally, the direct effect of ACh was assessed on neuronal precursor (smNPCs) and dopaminergic neurons differentiated from human inducible pluripotent stem cells (iPSCs). We observed a rescue in cell viability and mitochondrial function in smNPCs co-treated with ACh in the presence of 6OHDA. Stimulation of α7nAChRs with the agonist PNU282987 showed an even stronger rescue than ACh, suggesting the direct involvement of this receptor in neuroprotection. In conclusion, NGF has an anti-gliosis effect both in vivo and in vitro. NGF recovers mitochondrial function in striatal astrocytes. The neuroprotective effect of NGF acts also through stimulation of ACh release, thereby proving the direct effect of this latter on human neuronal precursors. Altogether, these data suggest a potential therapeutic role of NGF in the modulation of two relevant pathogenetic hallmarks of PD and other neurodegenerative diseases.

La malattia di Parkinson (PD) è una patologia neurodegenerativa caratterizzata dalla perdita di neuroni dopaminergici nella Substantia Nigra Pars Compacta e dalla presenza di depositi di α-sinucleina. L’attivazione di astrociti e microglia comporta la secrezione di molecole proinfiammatorie, quali citochine e chemochine, amplificando la degenerazione neuronale. La disfunzione mitocondriale è al tempo stesso causa e conseguenza della perdita di neuroni e terminali dopaminergici; in particolare, l’inibizione della catena respiratoria, la ridotta produzione di ATP, rilascio di DNA mitocondriale e stress ossidativo. Il Nerve Growth Factor (NGF) è il capostipite delle neurotrofine. La sua azione è mediata dal recettore Tirosin-chinasi A (TrkA), e regola proliferazione, sopravvivenza e differenziamento neuronale tramite diverse vie di segnalazione, quali PLC-γ, Ras/MEK/MAPK e PI3K/Akt. Pathways di apoptosi sono innescati a seguito del legame del NGF al recettore p75NTR, determinando il rilascio di citocromo c e l’attivazione della caspasi-9. Nei pazienti affetti da PD, è stata osservata una diminuzione dei livelli di NGF sia nel sangue che a livello della Substantia nigra (SN). Allo scopo di valutare l’efficacia del NGF nel trattamento del PD, abbiamo utilizzato un modello murino basato sull’iniezione intrastriatale unilaterale di 6OHDA, seguita da trattamento intranasale con NGF. I topi sono stati sottoposti a test comportamentali (cylinder test) ed analisi immunoistochimica di marcatori per attivazione astrogliale e marker dopaminergici (TH) su fettine cerebrali di striato e SN. Il NGF è in grado di ripristinare le funzioni motorie e la perdita di neuroni dopaminergici causata da 6OHDA, oltre ad avere attività anti-gliosi. L’attivazione degli astrociti, l’espressione del recettore TrkA e la disfunzione mitocondriale sono stati analizzati in colture primarie di astrociti da striato e corteccia motoria. NGF ha ridotto l’astrogliosi e ripristinato i livelli di TrkA e la funzionalità mitocondriale, analizzata mediante live imaging della morfologia e studi di bioenergetica. I neuroni dopaminergici, nonostante non esprimano il recettore TrkA, sono responsivi all’acetilcolina (ACh) secreta dai neuroni colinergici; esiste perciò una stretta correlazione questi due sistemi, in quanto i neuroni colinergici esprimono TrkA. Pertanto, si ipotizza un effetto protettivo indiretto del NGF sui neuroni dopaminergici attraverso stimolazione colinergica e rilascio di ACh. Questo è stato valutato su colture primarie di neuroni colinergici e dopaminergici, rispettivamente prelevati da striato e SN. I neuroni colinergici sono stati trattati con 6-OHDA e NGF, o in combinazione con DHβE, un inibitore dei recettori nicotinici (nAChRs) α4β2. I terreni condizionati sono stati trasferiti ai neuroni dopaminergici, inducendo una riduzione del numero di cellule apoptotiche e un aumento dell'espressione di TH, il recupero è parzialmente annullato in presenza di DHβE. Infine, è stata valutata l'azione diretta dell'ACh su precursori neuronalı (smNPCs) e sui neuroni dopaminergici differenziati da cellule staminali pluripotenti indotte (iPSC) umane. È stato osservato un miglioramento della vitalità cellulare e della funzione mitocondriale negli smNPCs trattati con ACh in presenza di 6-OHDA. In particolare, la stimolazione dei recettori α7 nAChRs con l’agonista PNU282987 ha mostrato un effetto protettivo ancora più significativo rispetto all'ACh, suggerendo il coinvolgimento diretto del recettore nella neuroprotezione. In conclusione, il NGF ha dimostrato un effetto anti-infiammatorio sia in vivo che in vitro, ripristinando inoltre la funzione mitocondriale negli astrociti striatali. Questo effetto è mediato dalla stimolazione dell'ACh. Questi dati suggeriscono un potenziale ruolo terapeutico del NGF nella modulazione di due importanti caratteristiche patogenetiche della PD e di altre malattie neurodegenerative.

(2024). Mitochondrial dysfunction and neuroinflammation in Parkinson’s disease models: the protective effect of Nerve Growth Factor (NGF). (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

Mitochondrial dysfunction and neuroinflammation in Parkinson’s disease models: the protective effect of Nerve Growth Factor (NGF)

GOGLIA, ILARIA
2024

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the Substantia Nigra Pars Compacta, and presence of α-synuclein deposits. Neuroinflammation and mitochondrial dysfunction are two hallmarks of the disease, the former centered on the activation of microglial cells and astrocytes: secretion of proinflammatory cytokines/chemokines creates a self-sustained loop exacerbating neuronal degeneration. Impaired mitochondrial function is also a well-known mechanism of PD: inhibition of respiratory complex I, impaired ATP production, mtDNA damage, and oxidative stress are consequences and causes of neuronal loss. Nerve Growth Factor (NGF) is the prototype member of the neurotrophin family. Its activity is mediated by the Tyrosine kinase receptor A (TrkA), which plays a key role in controlling cell proliferation, survival, and differentiation, through Ras/MEK/MAPK, PI3K/Akt and PLC-γ signaling pathways. NGF binds also to p75NTR, which activates the intrinsic apoptotic pathway leading to the release of cytochrome c from mitochondria and the activation of caspase-9. NGF levels decrease in the blood and in the Substantia nigra (SN) of PD patients. To study the efficacy of NGF in PD, a mice model was used based on unilateral injection of 6-OHDA in the striatum, followed by intranasal administration of NGF. Mice were assessed for behavior (cylinder test) and IHC analysis (astrocyte and microglia markers, and TH, marker of dopaminergic neurons) on slices of the striatum and SN. NGF treatment rescued the motor impairment and dopaminergic neuron loss induced by 6OHDA injection. Moreover, NGF completely reverted astroglial activation. Activation of astrocytes, TrkA expression, and mitochondrial dysfunction were detailed on in vitro primary culture from the motor cortex and striatum in ICC and WB experiments. NGF decreased GFAP levels, as well as recovered TrkA expression and mitochondrial function assessed by live cell imaging and bioenergetics studies. Dopaminergic neurons do not express TrkA, but are responsive to fluctuations of acetylcholine (ACh) produced by cholinergic neurons in CNS. Several evidences suggest the association between the dopaminergic and cholinergic systems, the latter being highly dependent on NGF for proper function. Given this knowledge, we hypnotized an indirect protective effect of NGF on dopaminergic neurons, through cholinergic ACh release, which acts on nicotinic ACh receptors (nAChRs) expressed on dopaminergic axons. We assessed this hypothesis on neuronal cultures of cholinergic and dopaminergic neurons, respectively from the striatum and SN. Cholinergic neurons were stressed with 6OHDA and treated with NGF alone or in the presence of DHβE (inhibitor of α4β2 nAChRs). Conditioned media were transferred to dopaminergic neurons. We observed a recovery in the percentage of apoptotic cells and, most of all in TH expression in dopaminergic neurons treated with media conditioned from NGF-treated neurons, which was partially lost in the presence of DHβE. Finally, the direct effect of ACh was assessed on neuronal precursor (smNPCs) and dopaminergic neurons differentiated from human inducible pluripotent stem cells (iPSCs). We observed a rescue in cell viability and mitochondrial function in smNPCs co-treated with ACh in the presence of 6OHDA. Stimulation of α7nAChRs with the agonist PNU282987 showed an even stronger rescue than ACh, suggesting the direct involvement of this receptor in neuroprotection. In conclusion, NGF has an anti-gliosis effect both in vivo and in vitro. NGF recovers mitochondrial function in striatal astrocytes. The neuroprotective effect of NGF acts also through stimulation of ACh release, thereby proving the direct effect of this latter on human neuronal precursors. Altogether, these data suggest a potential therapeutic role of NGF in the modulation of two relevant pathogenetic hallmarks of PD and other neurodegenerative diseases.
COLANGELO, ANNA MARIA
Nerve Growth Factor; Malattia di Parkison; Neuroinfiammazione; Danno mitocondriale; Acetilcolina
Nerve Growth Factor; Parkinson's disease; Neuroinflammation; Mitochondrial damage; Acetylcholine
BIO/10 - BIOCHIMICA
English
5-feb-2024
36
2022/2023
embargoed_20270205
(2024). Mitochondrial dysfunction and neuroinflammation in Parkinson’s disease models: the protective effect of Nerve Growth Factor (NGF). (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_876271.pdf

embargo fino al 05/02/2027

Descrizione: PhD Thesis - Goglia Ilaria - Cycle XXXVI
Tipologia di allegato: Doctoral thesis
Dimensione 4.37 MB
Formato Adobe PDF
4.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/459381
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact