Rocks’ fracturing state is a fundamental control on their hydro-mechanical properties at all scales. In fact, reliable in situ quantification of rock mass fracturing and its engineering quality is critical for several engineering applications. Fracturing state can be quantified in the laboratory by non-destructive geophysical techniques that are hardly applicable in situ, where biased mapping and statistical sampling strategies are usually exploited. Infrared thermography (IRT) has been used to infer the fracturing state of rock masses by measuring their thermal response to perturbations, but a physically based predictive approach is lacking. Our work focused on the investigation of the process of thermal perturbation in rocks at different scales to answer to different research question: is it possible to find a physical link between degree of fracturing and thermal response of the fractured rocks put to perturbation? Is it possible to meaningfully measure differences in behavior between media characterized by different degree of fracturing using ITR? Is it possible to quantify these differences to develop quantitative diagnostic methodologies? To this aim, we started performing an experimental study on the cooling behavior of pre-fractured rock samples, whose 3D fracture networks were reconstructed using Micro-CT and quantified by unbiased fracture abundance measures. We carried out cooling experiments in both laboratory and natural conditions, monitoring temperature with a IR-camera. Thermograms were processed to extract temperature distribution patterns and cooling histories, described in terms of synthetic descriptors that show statistically significant correlations with fracture abundance measures. More intensely fractured rocks cool at faster rates and outdoor experiments shows that differences in thermal response can be detected even in natural environmental conditions. 3D FEM models reproducing laboratory experiments outline the fundamental control of fracture pattern and convective boundary conditions on cooling dynamics. Based on a lumped capacitance approach, we provided a non-dimensional description of cooling curves in terms of a Curve Shape Parameter (CSP), independent on absolute thermal boundary conditions and lithology. This provided a starting point toward the development of a quantitative methodology for the contactless in situ assessment of rock mass fracturing. Then, starting from a robust theoretical framework and laboratory experimental investigation, we explored the potential of the IRT technique in predictive studies of the fracturing state of rock mass. To do this, it was necessary to export the experience, theoretical aspects, and experimental approach developed in the laboratory to the in situ scale, through the characterization of the cooling behavior of rock mass outcrops. We use the Mt. Gorsa quarry (Trentino, Italy) as a field laboratory to upscale a physics-based approach developed in the laboratory, including the effects of fracture heterogeneity, suitable rock mass quality descriptor, environmental conditions and IRT limitations. We reconstructed the slope in 3D by UAV photogrammetry, characterized rock mass quality in the field at selected outcrops in terms of Geological Strength Index (GSI), and measured their cooling behavior through 18h time-lapse IRT surveys. With ad hoc field experiments, we developed a novel procedure to correct IRT data in outdoor environments with complex topography. This allowed a spatially distributed quantification of rock mass surface cooling behavior in terms of CSP. Using nonlinear regression, we established a quantitative CSP-GSI relationship allowed translating CSP into GSI maps. Our results demonstrate the possibility to apply infrared thermography to the slope-scale mapping of rock mass fracturing based on a physics-based experimental methodology potentially useful in a wide-range of engineering problems.
Lo stato di fratturazione delle rocce è un controllo fondamentale sulle loro proprietà idromeccaniche a tutte le scale. Infatti, una quantificazione affidabile in situ della fratturazione dell’ammasso roccioso e della sua qualità ingegneristica è fondamentale per diverse applicazioni. Lo stato di fratturazione può essere quantificato in laboratorio con tecniche geofisiche non distruttive, ma difficilmente applicabili in situ, dove di solito si sfruttano strategie di mappatura parziale e di campionamento statistico. La termografia a infrarossi (IRT) è stata utilizzata per dedurre lo stato di fratturazione delle masse rocciose misurando la loro risposta termica alle perturbazioni, ma manca un approccio predittivo fisicamente basato. Il nostro lavoro si è concentrato sull'indagine del processo di perturbazione termica nelle rocce a diverse scale per rispondere a diverse domande di ricerca: è possibile trovare un legame fisico tra il grado di fratturazione e la risposta termica delle rocce fratturate sottoposte a perturbazione? È possibile misurare in modo significativo le differenze di comportamento tra mezzi a diversa fratturazione utilizzando IRT? È possibile quantificare queste differenze per sviluppare metodologie diagnostiche quantitative? A tal fine, abbiamo iniziato a condurre uno studio sperimentale sul comportamento di raffreddamento di campioni di roccia prefratturati, le cui reti di fratture 3D sono state ricostruite mediante Micro-CT e quantificate mediante misure di fratturazione unbiased. Abbiamo condotto esperimenti di raffreddamento sia in laboratorio che in condizioni naturali, monitorando la temperatura con una termocacamera. I termogrammi sono stati elaborati per estrarre modelli di distribuzione della temperatura e storie di raffreddamento, parametrizzate con descrittori sintetici che mostrano correlazioni statisticamente significative con le metriche di fratturazione. Le rocce più intensamente fratturate si raffreddano più rapidamente e le differenze nella risposta termica possono essere rilevate anche in condizioni ambientali naturali. I modelli FEM 3D che riproducono gli esperimenti di laboratorio evidenziano i principali controlli fisici sulle dinamiche di raffreddamento. Basandoci su modelli fisici, abbiamo fornito una descrizione sintetica delle curve di raffreddamento in termini di Curve Shape Parameter (CSP), indipendente dalle condizioni termiche al contorno assolute e dalla litologia. Ciò ha fornito un punto di partenza per lo sviluppo di una metodologia quantitativa per la valutazione in situ e contactless della fratturazione dell’ammasso roccioso. Per fare ciò, è stato necessario esportare l'esperienza, gli aspetti teorici e l'approccio sperimentale in situ, attraverso la caratterizzazione del comportamento di raffreddamento degli ammassi rocciosi in affioramento. Abbiamo utilizzato la cava di Monte Gorsa (Trentino, Italia) per approfondire l’approccio sviluppato in laboratorio, compresi gli effetti dell'eterogeneità delle fratture, tipologia dei descrittori di qualità dell'ammasso roccioso adeguato, le condizioni ambientali e le limitazioni dell'IRT. Abbiamo ricostruito il pendio in 3D mediante fotogrammetria UAV, caratterizzato la qualità dell'ammasso roccioso sul campo in affioramenti selezionati in termini di Indice di GSI e misurato il loro comportamento di raffreddamento mediante indagini IRT time-lapse di 18 ore. Con esperimenti sul campo ad hoc, abbiamo sviluppato una procedura innovativa per correggere i dati IRT in ambienti esterni con topografia complessa. Ciò ha permesso di quantificare in modo spaziale il comportamento di raffreddamento dell'ammasso roccioso in termini di CSP. Utilizzando una regressione non lineare, abbiamo stabilito una relazione quantitativa CSP-GSI e tradotto il CSP in mappe GSI. I nostri risultati dimostrano la possibilità di applicare la termografia a infrarossi alla valutazione della fratturazione degli ammassi rocciosi.
(2024). Quantitative evaluation of rock fracturing state across scales using Infrared Thermography: theoretical analysis, experimental modeling and upscaling to in situ conditions. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Quantitative evaluation of rock fracturing state across scales using Infrared Thermography: theoretical analysis, experimental modeling and upscaling to in situ conditions
FRANZOSI, FEDERICO
2024
Abstract
Rocks’ fracturing state is a fundamental control on their hydro-mechanical properties at all scales. In fact, reliable in situ quantification of rock mass fracturing and its engineering quality is critical for several engineering applications. Fracturing state can be quantified in the laboratory by non-destructive geophysical techniques that are hardly applicable in situ, where biased mapping and statistical sampling strategies are usually exploited. Infrared thermography (IRT) has been used to infer the fracturing state of rock masses by measuring their thermal response to perturbations, but a physically based predictive approach is lacking. Our work focused on the investigation of the process of thermal perturbation in rocks at different scales to answer to different research question: is it possible to find a physical link between degree of fracturing and thermal response of the fractured rocks put to perturbation? Is it possible to meaningfully measure differences in behavior between media characterized by different degree of fracturing using ITR? Is it possible to quantify these differences to develop quantitative diagnostic methodologies? To this aim, we started performing an experimental study on the cooling behavior of pre-fractured rock samples, whose 3D fracture networks were reconstructed using Micro-CT and quantified by unbiased fracture abundance measures. We carried out cooling experiments in both laboratory and natural conditions, monitoring temperature with a IR-camera. Thermograms were processed to extract temperature distribution patterns and cooling histories, described in terms of synthetic descriptors that show statistically significant correlations with fracture abundance measures. More intensely fractured rocks cool at faster rates and outdoor experiments shows that differences in thermal response can be detected even in natural environmental conditions. 3D FEM models reproducing laboratory experiments outline the fundamental control of fracture pattern and convective boundary conditions on cooling dynamics. Based on a lumped capacitance approach, we provided a non-dimensional description of cooling curves in terms of a Curve Shape Parameter (CSP), independent on absolute thermal boundary conditions and lithology. This provided a starting point toward the development of a quantitative methodology for the contactless in situ assessment of rock mass fracturing. Then, starting from a robust theoretical framework and laboratory experimental investigation, we explored the potential of the IRT technique in predictive studies of the fracturing state of rock mass. To do this, it was necessary to export the experience, theoretical aspects, and experimental approach developed in the laboratory to the in situ scale, through the characterization of the cooling behavior of rock mass outcrops. We use the Mt. Gorsa quarry (Trentino, Italy) as a field laboratory to upscale a physics-based approach developed in the laboratory, including the effects of fracture heterogeneity, suitable rock mass quality descriptor, environmental conditions and IRT limitations. We reconstructed the slope in 3D by UAV photogrammetry, characterized rock mass quality in the field at selected outcrops in terms of Geological Strength Index (GSI), and measured their cooling behavior through 18h time-lapse IRT surveys. With ad hoc field experiments, we developed a novel procedure to correct IRT data in outdoor environments with complex topography. This allowed a spatially distributed quantification of rock mass surface cooling behavior in terms of CSP. Using nonlinear regression, we established a quantitative CSP-GSI relationship allowed translating CSP into GSI maps. Our results demonstrate the possibility to apply infrared thermography to the slope-scale mapping of rock mass fracturing based on a physics-based experimental methodology potentially useful in a wide-range of engineering problems.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_790260.pdf
accesso aperto
Descrizione: Tesi
Tipologia di allegato:
Doctoral thesis
Dimensione
10.57 MB
Formato
Adobe PDF
|
10.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.