The rapid increase in goods needed and a parallel waste production, particularly evident with the significant growth in the global population in recent decades, poses a threat to both public health and the environment, jeopardizing the sustainable development of our planet. Projections suggest that global municipal waste generation will reach 3.4 billion tons annually by 2050. Some human activities produce more waste than others, such as the transportation sector, which includes tyre production. Tyre production surpassed 2.5 billion units in 2021, with an estimated 2% growth over the next five years. With more than half of this number (1.5 billion units) becoming yearly waste, the challenges associated with management of tyre’s end of life represent a significant issue. Tyre grinding is one of the most commonly used techniques for recycling this material. However, it has been demonstrated that the ground tyres obtained cannot be incorporated into virgin blends, as the properties of the new compound would be compromised. Additionally, a significant amount of tyre debris is released into the environment during driving, acceleration and braking, due to abrasion with the asphalt. These tyre debris, along with asphalt and dust, are known as tyre and road wear particles (TRWP). Numerous studies have examined characteristics of TRWP, strategies to reduce the release of them, but little is known about their fate. Tyres consist of a blend of highly complex and diverse materials, including elastomers, fillers, plasticizers, stabilizers, vulcanizing agents, antioxidants, textile components, metals, and more. Several bacteria have been studied for their ability to degrade vulcanized rubber, particularly natural rubber blends. However, due to the complexity of the material, it is unlikely that the biodegradation, if possible, is solely attributable to individual microorganisms. In this research project, funded by Pirelli Tyres S.p.A, both aspects of abiotic and biotic degradation were assessed using four different rubber compounds produced using typical tyre tread composites, as well as simpler blends based on natural rubber compounds. As an example of abiotic degradation, we examined photooxidation, while for biotic degradation we focused our attention on the still unexplored potential of natural microbial communities. Natural environments host a multitude of microorganisms that thrive in polluted environments and adapt to use pollutants to their advantage for growth, often producing enzymes capable of metabolizing the pollutants, including polymer such as rubber compounds. Thus, following this concept, microorganisms derived from soil contaminated with tyre debris were isolated and initially tested as single isolates through high-throughput techniques, with the future aim of assessing them for different enzymatic activities. In the meanwhile, the ability of some microorganisms to degrade rubber compounds was assessed both at morphological and at chemical level. Additionally, the biodiversity found in the soil samples was evaluated and compared with the biodiversity of control samples through metagenomic analysis. Overall, the described work lays the foundations for a complete assessment of TRWP end of life. In parallel, as some innovative tyre compounds contain lignin as alternative filler, we concentrated our attention in characterizing a novel laccase from the white-rot fungus Trametes polyzona, which a preliminary screening suggested as promising for specific industrial applications. Indeed, we could demonstrate its peculiar ability to decolorize specific dyes. The future development of this work will be to merge targeted and untargeted approaches to describe TRWP end of life and possibly developing protocols for managing this wasted material in a logic of circularity of resources and of diminishing environmental impact.
L'aumento rapido della necessità di beni e una produzione parallela di rifiuti, evidente con la significativa crescita della popolazione globale negli ultimi decenni, rappresenta una minaccia sia per la salute pubblica che per l'ambiente, mettendo a rischio lo sviluppo sostenibile del nostro pianeta. Alcune attività umane producono più rifiuti di altre, come il settore dei trasporti, che include la produzione di pneumatici. La produzione di pneumatici ha superato i 2,5 miliardi di unità nel 2021, con una crescita stimata del 2% nei prossimi cinque anni. Con più della metà di questo numero che diventa rifiuto, le sfide legate alla gestione del fine vita degli pneumatici rappresentano un problema significativo. La macinazione degli pneumatici è una delle tecniche più utilizzate per il riciclo di questo materiale. Tuttavia, è stato dimostrato che gli pneumatici macinati non possono essere incorporati in miscele vergini, in quanto le proprietà del nuovo composto verrebbero compromesse. Inoltre, una quantità significativa di detriti di pneumatici viene rilasciata nell'ambiente durante la guida, l'accelerazione e il frenaggio, a causa dell'abrasione con l'asfalto. Questi detriti di pneumatici, insieme all'asfalto e alla polvere, sono noti come particelle di usura degli pneumatici e strada (TRWP). Studi hanno esaminato le caratteristiche delle TRWP, le strategie per ridurre il rilascio di esse, ma poco si sa del loro destino. Gli pneumatici sono composti da una miscela di materiali complessi e diversi, tra cui elastomeri, fillers, ecc. Diversi batteri sono stati studiati per la loro capacità di degradare la gomma vulcanizzata, in particolare le miscele di gomma naturale. Tuttavia, a causa della complessità del materiale, è improbabile che la biodegradazione, se possibile, sia attribuibile esclusivamente a singoli microrganismi. In questo progetto di ricerca, finanziato da Pirelli Tyres S.p.A, sono stati valutati gli aspetti della degradazione abiotica e biotica utilizzando quattro diverse miscele di gomma, prodotti con componenti tipici delle mescole da battistrada, nonché mescole più semplici basate su miscele di gomma naturale. Come esempio di degradazione abiotica, abbiamo esaminato la fotoossidazione, mentre per la degradazione biotica abbiamo concentrato la nostra attenzione sul potenziale inesplorato delle comunità microbiche. Gli ambienti naturali ospitano una moltitudine di microrganismi che prosperano in ambienti inquinati e si adattano usando gli inquinanti sfruttandoli per la loro crescita. Inoltre, questi organismi producono enzimi capaci di metabolizzare inquinanti, incluse le mescole di gomma. Pertanto, seguendo questo concetto, i microrganismi derivati dal suolo contaminato da detriti degli pneumatici sono stati isolati e testati come isolati singoli attraverso tecniche di high-throughput, con l'obiettivo futuro di valutarli per diverse attività enzimatiche. Nel frattempo, la capacità di alcuni microrganismi di degradare i composti di gomma è stata valutata sia a livello morfologico che chimico. Inoltre, la biodiversità trovata nei campioni di suolo è stata valutata e confrontata con la biodiversità di campioni di controllo attraverso l'analisi metagenomica. Nel complesso, il lavoro descritto pone le basi per una valutazione completa del fine vita delle TRWP. Parallelamente, poiché alcuni composti innovativi per pneumatici contengono lignina come filler alternativo, abbiamo concentrato la nostra attenzione nella caratterizzazione di una nuova laccasi dal fungo Trametes polyzona, che uno screening preliminare ha suggerito come promettente per specifiche applicazioni industriali. Siamo riusciti a dimostrare la sua capacità di decolorare specifici coloranti. Lo sviluppo futuro di questo lavoro sarà quello di unire approcci per descrivere il fine vita delle TRWP e sviluppare protocolli per la gestione di questo scarto in una logica di circolarità delle risorse.
(2024). Design of environmental-friendly rubber composites driven by biodegradability assessment. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Design of environmental-friendly rubber composites driven by biodegradability assessment
BUCCHIERI, DANIELA
2024
Abstract
The rapid increase in goods needed and a parallel waste production, particularly evident with the significant growth in the global population in recent decades, poses a threat to both public health and the environment, jeopardizing the sustainable development of our planet. Projections suggest that global municipal waste generation will reach 3.4 billion tons annually by 2050. Some human activities produce more waste than others, such as the transportation sector, which includes tyre production. Tyre production surpassed 2.5 billion units in 2021, with an estimated 2% growth over the next five years. With more than half of this number (1.5 billion units) becoming yearly waste, the challenges associated with management of tyre’s end of life represent a significant issue. Tyre grinding is one of the most commonly used techniques for recycling this material. However, it has been demonstrated that the ground tyres obtained cannot be incorporated into virgin blends, as the properties of the new compound would be compromised. Additionally, a significant amount of tyre debris is released into the environment during driving, acceleration and braking, due to abrasion with the asphalt. These tyre debris, along with asphalt and dust, are known as tyre and road wear particles (TRWP). Numerous studies have examined characteristics of TRWP, strategies to reduce the release of them, but little is known about their fate. Tyres consist of a blend of highly complex and diverse materials, including elastomers, fillers, plasticizers, stabilizers, vulcanizing agents, antioxidants, textile components, metals, and more. Several bacteria have been studied for their ability to degrade vulcanized rubber, particularly natural rubber blends. However, due to the complexity of the material, it is unlikely that the biodegradation, if possible, is solely attributable to individual microorganisms. In this research project, funded by Pirelli Tyres S.p.A, both aspects of abiotic and biotic degradation were assessed using four different rubber compounds produced using typical tyre tread composites, as well as simpler blends based on natural rubber compounds. As an example of abiotic degradation, we examined photooxidation, while for biotic degradation we focused our attention on the still unexplored potential of natural microbial communities. Natural environments host a multitude of microorganisms that thrive in polluted environments and adapt to use pollutants to their advantage for growth, often producing enzymes capable of metabolizing the pollutants, including polymer such as rubber compounds. Thus, following this concept, microorganisms derived from soil contaminated with tyre debris were isolated and initially tested as single isolates through high-throughput techniques, with the future aim of assessing them for different enzymatic activities. In the meanwhile, the ability of some microorganisms to degrade rubber compounds was assessed both at morphological and at chemical level. Additionally, the biodiversity found in the soil samples was evaluated and compared with the biodiversity of control samples through metagenomic analysis. Overall, the described work lays the foundations for a complete assessment of TRWP end of life. In parallel, as some innovative tyre compounds contain lignin as alternative filler, we concentrated our attention in characterizing a novel laccase from the white-rot fungus Trametes polyzona, which a preliminary screening suggested as promising for specific industrial applications. Indeed, we could demonstrate its peculiar ability to decolorize specific dyes. The future development of this work will be to merge targeted and untargeted approaches to describe TRWP end of life and possibly developing protocols for managing this wasted material in a logic of circularity of resources and of diminishing environmental impact.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_791792.pdf
embargo fino al 06/02/2027
Descrizione: Design of environmental-friendly rubber composites driven by biodegradability assessment
Tipologia di allegato:
Doctoral thesis
Dimensione
8.18 MB
Formato
Adobe PDF
|
8.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.