In recent years, nanotechnology have made a significant impact in the field of medicine through the remarkable therapeutic and diagnostic potential of nanoparticles (NPs). Among these, protein-based NPs have gained considerable attention as drug delivery systems and vaults emerge as ideal candidates. Vaults are the largest known ribonucleoprotein particles naturally occurring in higher eukaryotic cells. 78 copies of the dominant component Major Vault Protein (MVP) assemble into a barrel-like "nano-capsule”, enclosing other proteins like poly (ADP-ribose) polymerase, telomerase-associated protein-1, and some small untranslated RNAs. While the precise physiological roles of this nanocomplex are not completely understood, it has been associated with numerous cellular functions that promote cell survival and provide cytoprotective effects. Vaults possess unique properties, including non-immunogenicity, biodegradability, dynamic structure, and a spacious cavity, making them highly attractive for delivery of therapeutic molecules, often targeted to cancer cell lines. However, existing production and purification protocols for vault are complex, partly due to their reliance on higher eukaryotes as expression systems. In Chapter 1, a newly published simplified procedure is presented, combining human vault expression in the yeast Komagataella phaffii and a purification process involving RNase pretreatment followed by size-exclusion chromatography, significantly streamlining the process. The study also addresses the challenge of protein aggregation and identifies optimal storage conditions. One remarkable vault feature is its ability to encapsulate cargo proteins by fusing them with the INT domain, derived from the vault-interacting vPARP protein. Chapter 2 explores the encapsulation of GFP-INT as a reporter cargo within vaults expressed and purified using the simplified procedure. Encapsulation of GFP-INT was achieved through a straightforward mixing process, harnessing vaults' "breathing" property. The stoichiometry of GFP-INT loading into vault lumen was found to saturate the binding site with about 20 copies of GFP-INT. Furthermore, the study confirms the ability of vaults to deliver cargo molecules inside cancer cells, particularly the Melanoma A375 cell line. The rise of nucleic acid-based therapeutics has demanded better delivery systems, leading researchers to rely on NPs to tackle this issue. Leveraging recombinant vault particles as nano-drug delivery systems shows significant promise. Chapter 3 investigates the potential of using vaults for siRNA delivery, focusing on siRNAs targeting LADON, a lncRNA associated with tumor progression in melanoma. Two strategies were pursued: one involving chemical conjugation of siRNA to the INT domain, and the other aiming for the direct loading of siRNA into vaults. While progress is made in crosslinking GFP-INT, the construction of the final product, GFP-INT-siRNA, is still ongoing. With the other approach, the study demonstrates that recombinant vaults can mediate the delivery of naked siRNA molecules, without additional formulation aiding the transfection, causing a biological effect. To achieve specific targeting, NPs can be conjugated to antibodies (Ab) on the surface by different chemical methods. Yet these methods do not necessarily guarantee the correct orientation of the Ab to be active. Chapter 4 addresses this challenge with the construction of an engineered vault variant carrying the protein A-derived Z peptide - tightly binding Fc portion of human IgG1 - allowing for direct and oriented Ab-vault conjugation. Vault-Z, produced and purified in K. phaffii with the optimized procedure, maintains the same morphology and size as the wild-type vault. A comprehensive characterization of vault-Z:Ab binding reveals the capacity to bind up to 10-12 Ab molecules per vault-Z. Lastly, we shown that vault-Z uptake in cancer cells, significantly increases upon conjugation with a targeting Ab

Le nanotecnologie stanno rivoluzionando il settore medico grazie al potenziale terapeutico e diagnostico delle nanoparticelle (NP). Le NP proteiche hanno ottenuto particolare attenzione come veicoli per la somministrazione di farmaci. Tra di esse spicca la NP vault, la più grande particella ribonucleoproteica conosciuta e presente naturalmente nelle cellule degli eucarioti superiori. La vault è costituita da 78 copie della Major Vault Protein (MVP) che forma una struttura a barile, in grado di racchiudere altre proteine, come la poli (ADP-ribosio) polimerasi, la proteina 1 associata alla telomerasi e alcuni RNA non tradotti. I ruoli fisiologici della vault non sono del tutto chiari ma si riporta essere coinvolta in diverse funzioni cellulari per la sopravvivenza di citoprotezione. La vault presenta caratteristiche uniche: non è immunogenica, è biodegradabile e ha una struttura dinamica e una cavità spaziosa, che la rendono idonea per la somministrazione mirata di molecole terapeutiche, spesso destinate alle linee cellulari tumorali. Tuttavia, la produzione e la purificazione di vault rappresentano un processo complesso. Nel capitolo 1, è presentata una procedura semplificata che combina l'espressione di vault nel lievito Komagataella phaffii con una procedura di purificazione che coinvolge il pretrattamento con RNasi seguito da cromatografia a esclusione molecolare. Lo studio affronta anche il problema dell'aggregazione proteica, identificando le condizioni di conservazione ottimali. La NP vault è capace di incapsulare proteine cargo se fuse con il dominio INT, derivato dalla proteina vPARP. Nel capitolo 2, viene esplorata l’incapsulazione di GFP-INT come proteina cargo all'interno di vault, prodotte con una procedura semplificata. L'incapsulazione di GFP-INT sfrutta la proprietà di "respirazione" delle vault. Il lavoro ha anche valutato la stechiometria del carico di GFP-INT nella vault, evidenziando una saturazione con circa 20 copie di GFP-INT. Inoltre, è stata confermata l'efficacia delle vault nel trasportare molecole cargo all'interno delle cellule tumorali, come le cellule di melanoma A375. Nell'ultimo decennio, l'aumento delle terapie basate su acidi nucleici ha creato la necessità di sviluppare metodi di somministrazione più efficaci, spingendo i ricercatori a esplorare l'uso di nanoparticelle (NP) come potenziali strumenti. Nel capitolo 3, è stata esaminata la possibilità di utilizzare le vault come veicoli per la somministrazione di siRNA, concentrando l'attenzione sugli siRNA diretti contro LADON, un lungo RNA non codificante associato alla progressione e all'invasione tumorale nel melanoma. Due strategie sono state perseguite: una coinvolge il potenziale caricamento di siRNA nel lume delle vault tramite la coniugazione chimica al dominio INT, mentre l'altra mira al caricamento diretto di siRNA all'interno delle vault. Anche se il completamento del prodotto finale, GFP-INT-siRNA, è ancora in corso, lo studio ha dimostrato che le vault ricombinanti possono mediare con successo la somministrazione di siRNA non rivestiti senza richiedere formulazioni aggiuntive. La coniugazione, mediante metodi chimici, di anticorpi (Ab) sulla superficie di NPs ne permette il targeting attivo. Questa però non sempre garantisce il corretto orientamento dell’Ab. Nel capitolo 4, questa sfida è stata affrontata con la creazione di vault-Z: variante ingegnerizzata che esprime il peptide Z derivato dalla proteina A in grado di legarsi saldamente alla porzione Fc delle IgG1 umane. Vault-Z, ottenuta utilizzando la procedura ottimizzata in K. phaffii, mantiene la stessa morfologia e dimensione della vault WT. Un'analisi approfondita ha rivelato la capacità di Vault-Z di legare fino a 12 molecole di Ab. Lo studio ha dimostrato un significativo aumento dell'endocitosi di Vault-Z nelle cellule tumorali SKBR3 quando essa è coniugata con anticorpi, suggerendo che tale NP rappresenta un potente strumento per il targeting mirato

(2024). Leveraging Recombinant Vault Nanoparticles Produced in Komagataella phaffii for Targeted Delivery of siRNAs as therapeutic molecules. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).

Leveraging Recombinant Vault Nanoparticles Produced in Komagataella phaffii for Targeted Delivery of siRNAs as therapeutic molecules

TOMAINO, GIULIA
2024

Abstract

In recent years, nanotechnology have made a significant impact in the field of medicine through the remarkable therapeutic and diagnostic potential of nanoparticles (NPs). Among these, protein-based NPs have gained considerable attention as drug delivery systems and vaults emerge as ideal candidates. Vaults are the largest known ribonucleoprotein particles naturally occurring in higher eukaryotic cells. 78 copies of the dominant component Major Vault Protein (MVP) assemble into a barrel-like "nano-capsule”, enclosing other proteins like poly (ADP-ribose) polymerase, telomerase-associated protein-1, and some small untranslated RNAs. While the precise physiological roles of this nanocomplex are not completely understood, it has been associated with numerous cellular functions that promote cell survival and provide cytoprotective effects. Vaults possess unique properties, including non-immunogenicity, biodegradability, dynamic structure, and a spacious cavity, making them highly attractive for delivery of therapeutic molecules, often targeted to cancer cell lines. However, existing production and purification protocols for vault are complex, partly due to their reliance on higher eukaryotes as expression systems. In Chapter 1, a newly published simplified procedure is presented, combining human vault expression in the yeast Komagataella phaffii and a purification process involving RNase pretreatment followed by size-exclusion chromatography, significantly streamlining the process. The study also addresses the challenge of protein aggregation and identifies optimal storage conditions. One remarkable vault feature is its ability to encapsulate cargo proteins by fusing them with the INT domain, derived from the vault-interacting vPARP protein. Chapter 2 explores the encapsulation of GFP-INT as a reporter cargo within vaults expressed and purified using the simplified procedure. Encapsulation of GFP-INT was achieved through a straightforward mixing process, harnessing vaults' "breathing" property. The stoichiometry of GFP-INT loading into vault lumen was found to saturate the binding site with about 20 copies of GFP-INT. Furthermore, the study confirms the ability of vaults to deliver cargo molecules inside cancer cells, particularly the Melanoma A375 cell line. The rise of nucleic acid-based therapeutics has demanded better delivery systems, leading researchers to rely on NPs to tackle this issue. Leveraging recombinant vault particles as nano-drug delivery systems shows significant promise. Chapter 3 investigates the potential of using vaults for siRNA delivery, focusing on siRNAs targeting LADON, a lncRNA associated with tumor progression in melanoma. Two strategies were pursued: one involving chemical conjugation of siRNA to the INT domain, and the other aiming for the direct loading of siRNA into vaults. While progress is made in crosslinking GFP-INT, the construction of the final product, GFP-INT-siRNA, is still ongoing. With the other approach, the study demonstrates that recombinant vaults can mediate the delivery of naked siRNA molecules, without additional formulation aiding the transfection, causing a biological effect. To achieve specific targeting, NPs can be conjugated to antibodies (Ab) on the surface by different chemical methods. Yet these methods do not necessarily guarantee the correct orientation of the Ab to be active. Chapter 4 addresses this challenge with the construction of an engineered vault variant carrying the protein A-derived Z peptide - tightly binding Fc portion of human IgG1 - allowing for direct and oriented Ab-vault conjugation. Vault-Z, produced and purified in K. phaffii with the optimized procedure, maintains the same morphology and size as the wild-type vault. A comprehensive characterization of vault-Z:Ab binding reveals the capacity to bind up to 10-12 Ab molecules per vault-Z. Lastly, we shown that vault-Z uptake in cancer cells, significantly increases upon conjugation with a targeting Ab
VANONI, MARCO ERCOLE
FRASCOTTI, GIANNI
nanoparticella vault; trasporto di farmaci; siRNA terapeutici; Komagataella phaffii; cura del cancro
vault nanoparticle; drug delivery; siRNA therapeutics; Komagataella phaffii; cancer treatment
BIO/10 - BIOCHIMICA
English
2-feb-2024
36
2022/2023
UNIVERSITÉ DE PARIS
open
(2024). Leveraging Recombinant Vault Nanoparticles Produced in Komagataella phaffii for Targeted Delivery of siRNAs as therapeutic molecules. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_791182.pdf

accesso aperto

Descrizione: Tomaino Giulia - 791182
Tipologia di allegato: Doctoral thesis
Dimensione 15.75 MB
Formato Adobe PDF
15.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/458778
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact