We prove that the kth Gaussian map (Figure presented.) is surjective on a polarized unnodal Enriques surface (Figure presented.) with (Figure presented.). In particular, as a consequence, when (Figure presented.), we obtain the surjectivity of the kth Gauss-Prym map (Figure presented.), with (Figure presented.), on smooth hyperplane sections (Figure presented.). In case (Figure presented.), it is sufficient to ask (Figure presented.).
Faro, D., Spelta, I. (2023). Gauss-Prym maps on Enriques surfaces. MATHEMATISCHE NACHRICHTEN, 296(9 (September 2023)), 4454-4462 [10.1002/mana.202200287].
Gauss-Prym maps on Enriques surfaces
Faro, D;
2023
Abstract
We prove that the kth Gaussian map (Figure presented.) is surjective on a polarized unnodal Enriques surface (Figure presented.) with (Figure presented.). In particular, as a consequence, when (Figure presented.), we obtain the surjectivity of the kth Gauss-Prym map (Figure presented.), with (Figure presented.), on smooth hyperplane sections (Figure presented.). In case (Figure presented.), it is sufficient to ask (Figure presented.).File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.