Two complexes, related to the active site of [FeFe]-hydrogenases, [Fe2(CO)4(κ2-pma)(µ-bdt)] (1) and [Fe2(CO)4(κ2-pma)(µ-pdt)] (2) (bdt = benzene-1,2-dithiolate, pdt = propane-1,2-dithiolate) featuring the diaza chelate ligand trans-N-(2-pyridylmethylene)aniline (pma) were prepared, in order to study the influence of such a redox ligand, potentially non-innocent, on their redox behaviours. Both complexes were synthesized by photolysis in moderate yields, and they were characterized by IR, 1H and 13C{1H} NMR spectroscopies, elemental analyses and X-ray diffraction. Their electrochemical study by cyclic voltammetry, in the presence and in the absence of protons, revealed different behaviours depending on the aliphatic or aromatic nature of the dithiolate bridge. Density functional theory (DFT) calculations showed the role of the pma ligand as an electron reservoir, allowing the rationalization of the proton reduction process of complex 1.

Mele, A., Arrigoni, F., De Gioia, L., Elleouet, C., Pétillon, F., Schollhammer, P., et al. (2023). Use of the Asymmetrical Chelating N-Donor 2-Imino-Pyridine as a Redox [Fe4S4] Cubane Surrogate at a Di-Iron Site Related to [FeFe]-Hydrogenases. INORGANICS, 11(12) [10.3390/inorganics11120463].

Use of the Asymmetrical Chelating N-Donor 2-Imino-Pyridine as a Redox [Fe4S4] Cubane Surrogate at a Di-Iron Site Related to [FeFe]-Hydrogenases

Arrigoni, Federica
;
De Gioia, Luca;Zampella, Giuseppe
2023

Abstract

Two complexes, related to the active site of [FeFe]-hydrogenases, [Fe2(CO)4(κ2-pma)(µ-bdt)] (1) and [Fe2(CO)4(κ2-pma)(µ-pdt)] (2) (bdt = benzene-1,2-dithiolate, pdt = propane-1,2-dithiolate) featuring the diaza chelate ligand trans-N-(2-pyridylmethylene)aniline (pma) were prepared, in order to study the influence of such a redox ligand, potentially non-innocent, on their redox behaviours. Both complexes were synthesized by photolysis in moderate yields, and they were characterized by IR, 1H and 13C{1H} NMR spectroscopies, elemental analyses and X-ray diffraction. Their electrochemical study by cyclic voltammetry, in the presence and in the absence of protons, revealed different behaviours depending on the aliphatic or aromatic nature of the dithiolate bridge. Density functional theory (DFT) calculations showed the role of the pma ligand as an electron reservoir, allowing the rationalization of the proton reduction process of complex 1.
Articolo in rivista - Articolo scientifico
cyclic voltammetry; DFT calculations; diaza chelate; dinuclear; hydrogenases; imino-pyridine; iron; non-innocent ligand; potential inversion; redox ligand;
English
29-nov-2023
2023
11
12
463
open
Mele, A., Arrigoni, F., De Gioia, L., Elleouet, C., Pétillon, F., Schollhammer, P., et al. (2023). Use of the Asymmetrical Chelating N-Donor 2-Imino-Pyridine as a Redox [Fe4S4] Cubane Surrogate at a Di-Iron Site Related to [FeFe]-Hydrogenases. INORGANICS, 11(12) [10.3390/inorganics11120463].
File in questo prodotto:
File Dimensione Formato  
10281-453306_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 12.16 MB
Formato Adobe PDF
12.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/453306
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact