Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world.Reportedly, Western-type diets may induce the loss of key microbial taxa within the gastrointestinal microbiota, promoting the onset of noncommunicable diseases. It was hypothesized that the consumption of raw vegetables could contribute to the maintenance of the intestinal microbial community structure. In this context, we explored bacteria associated with commercial rocket salads produced through different farming practices: traditional (conventional, organic, and integrated) and vertical farming. Viable counts of mesophilic bacteria and lactic acid bacteria (LAB) were performed on plate count agar (PCA) and de Man-Rogosa-Sharpe (MRS) agar at pH 5.7, whereas metataxonomics through 16S rRNA gene sequencing was used to profile total bacteria associated with rocket salads. We found that rocket salads from vertical farming had much fewer viable bacteria and had a bacterial community structure markedly different from that of rocket salads from traditional farming. Furthermore, although alpha- and beta-diversity analyses did not differentiate rocket samples according to farming techniques, several bacterial taxa distinguished organic and integrated from conventional farming salads, suggesting that farming practices could affect the taxonomic composition of rocket bacterial communities. LAB were isolated from only traditional farming samples and belonged to different species, which were variably distributed among samples and could be partly associated with farming practices. Finally, the INFOGEST protocol for in vitro simulation of gastrointestinal digestion revealed that several taxonomically different rocket-associated bacteria (particularly LAB) could survive gastrointestinal transit. This study suggests that commercial ready-to-eat rocket salads harbor live bacteria that possess the ability to survive gastrointestinal transit, potentially contributing to the taxonomic structure of the human gut microbiota.IMPORTANCE Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world. Here, we studied the microorganisms that are associated with commercial ready-to-eat rocket salads produced through different farming practices. We showed that rocket salad (a widely consumed vegetal food frequently eaten raw) may be a source of lactic acid bacteria and other microbes that can survive gastrointestinal transit, potentially increasing the biodiversity of the intestinal microbiota. This deduction may be valid for virtually all vegetal foods that are consumed raw.

Mantegazza, G., Gargari, G., Duncan, R., Consalez, F., Taverniti, V., Riso, P., et al. (2023). Ready-To-Eat Rocket Salads as Potential Reservoir of Bacteria for the Human Microbiome. MICROBIOLOGY SPECTRUM, 11(1 (January/February 2023)), 1-14 [10.1128/spectrum.02970-22].

Ready-To-Eat Rocket Salads as Potential Reservoir of Bacteria for the Human Microbiome

Guglielmetti, S
2023

Abstract

Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world.Reportedly, Western-type diets may induce the loss of key microbial taxa within the gastrointestinal microbiota, promoting the onset of noncommunicable diseases. It was hypothesized that the consumption of raw vegetables could contribute to the maintenance of the intestinal microbial community structure. In this context, we explored bacteria associated with commercial rocket salads produced through different farming practices: traditional (conventional, organic, and integrated) and vertical farming. Viable counts of mesophilic bacteria and lactic acid bacteria (LAB) were performed on plate count agar (PCA) and de Man-Rogosa-Sharpe (MRS) agar at pH 5.7, whereas metataxonomics through 16S rRNA gene sequencing was used to profile total bacteria associated with rocket salads. We found that rocket salads from vertical farming had much fewer viable bacteria and had a bacterial community structure markedly different from that of rocket salads from traditional farming. Furthermore, although alpha- and beta-diversity analyses did not differentiate rocket samples according to farming techniques, several bacterial taxa distinguished organic and integrated from conventional farming salads, suggesting that farming practices could affect the taxonomic composition of rocket bacterial communities. LAB were isolated from only traditional farming samples and belonged to different species, which were variably distributed among samples and could be partly associated with farming practices. Finally, the INFOGEST protocol for in vitro simulation of gastrointestinal digestion revealed that several taxonomically different rocket-associated bacteria (particularly LAB) could survive gastrointestinal transit. This study suggests that commercial ready-to-eat rocket salads harbor live bacteria that possess the ability to survive gastrointestinal transit, potentially contributing to the taxonomic structure of the human gut microbiota.IMPORTANCE Western-type diets are composed of foods with a reduced amount of naturally occurring microorganisms. It was hypothesized that a microbe-depleted diet can favor the alteration of the human intestinal microbial ecosystem, therefore contributing to the onset of chronic metabolic and immune diseases currently recognized as the most significant causes of death in the developed world. Here, we studied the microorganisms that are associated with commercial ready-to-eat rocket salads produced through different farming practices. We showed that rocket salad (a widely consumed vegetal food frequently eaten raw) may be a source of lactic acid bacteria and other microbes that can survive gastrointestinal transit, potentially increasing the biodiversity of the intestinal microbiota. This deduction may be valid for virtually all vegetal foods that are consumed raw.
Articolo in rivista - Articolo scientifico
16S rRNA gene profiling; lactic acid bacteria; Leuconostoc; microbial depletion hypothesis; nonhuman microbiota; raw vegetables; rocket salad;
English
20-dic-2022
2023
11
1 (January/February 2023)
1
14
e02970-22
open
Mantegazza, G., Gargari, G., Duncan, R., Consalez, F., Taverniti, V., Riso, P., et al. (2023). Ready-To-Eat Rocket Salads as Potential Reservoir of Bacteria for the Human Microbiome. MICROBIOLOGY SPECTRUM, 11(1 (January/February 2023)), 1-14 [10.1128/spectrum.02970-22].
File in questo prodotto:
File Dimensione Formato  
Mantegazza-2023-Microbiol Spectrum-VoR.pdf

accesso aperto

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/451782
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact