Streptococcus thermophilus is a major component of dairy starter cultures used for the manufacture of yoghurt and cheese. In this study, the CO(2) metabolism of S. thermophilus DSM 20617(T), grown in either a N(2) atmosphere or an enriched CO(2) atmosphere, was analysed using both genetic and proteomic approaches. Growth experiments performed in a chemically defined medium revealed that CO(2) depletion resulted in bacterial arginine, aspartate and uracil auxotrophy. Moreover, CO(2) depletion governed a significant change in cell morphology, and a high reduction in biomass production. A comparative proteomic analysis revealed that cells of S. thermophilus showed a different degree of energy status depending on the CO(2) availability. In agreement with proteomic data, cells grown under N(2) showed a significantly higher milk acidification rate compared with those grown in an enriched CO(2) atmosphere. Experiments carried out on S. thermophilus wild-type and its derivative mutant, which was inactivated in the phosphoenolpyruvate carboxylase and carbamoyl-phosphate synthase activities responsible for fixing CO(2) to organic molecules, suggested that the anaplerotic reactions governed by these enzymes have a central role in bacterial metabolism. Our results reveal the capnophilic nature of this micro-organism, underlining the essential role Of CO(2) in S. thermophilus physiology, and suggesting potential applications in dairy fermentation processes.
Arioli, S., Roncada, P., Salzano, A., Deriu, F., Corona, S., Guglielmetti, S., et al. (2009). The Relevance of Carbon Dioxide Metabolism in Streptococcus thermophilus. MICROBIOLOGY, 155(6), 1953-1965 [10.1099/mic.0.024737-0].
The Relevance of Carbon Dioxide Metabolism in Streptococcus thermophilus
Guglielmetti, SD;
2009
Abstract
Streptococcus thermophilus is a major component of dairy starter cultures used for the manufacture of yoghurt and cheese. In this study, the CO(2) metabolism of S. thermophilus DSM 20617(T), grown in either a N(2) atmosphere or an enriched CO(2) atmosphere, was analysed using both genetic and proteomic approaches. Growth experiments performed in a chemically defined medium revealed that CO(2) depletion resulted in bacterial arginine, aspartate and uracil auxotrophy. Moreover, CO(2) depletion governed a significant change in cell morphology, and a high reduction in biomass production. A comparative proteomic analysis revealed that cells of S. thermophilus showed a different degree of energy status depending on the CO(2) availability. In agreement with proteomic data, cells grown under N(2) showed a significantly higher milk acidification rate compared with those grown in an enriched CO(2) atmosphere. Experiments carried out on S. thermophilus wild-type and its derivative mutant, which was inactivated in the phosphoenolpyruvate carboxylase and carbamoyl-phosphate synthase activities responsible for fixing CO(2) to organic molecules, suggested that the anaplerotic reactions governed by these enzymes have a central role in bacterial metabolism. Our results reveal the capnophilic nature of this micro-organism, underlining the essential role Of CO(2) in S. thermophilus physiology, and suggesting potential applications in dairy fermentation processes.File | Dimensione | Formato | |
---|---|---|---|
Arioli-2009-Microbiology-VoR.pdf
Solo gestori archivio
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
469.1 kB
Formato
Adobe PDF
|
469.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.