We observe that, in the eta-periodic motivic stable homotopy category, odd rank vector bundles behave to some extent as if they had a nowhere vanishing section. We discuss some consequences concerning SLc-orientations of motivic ring spectra and the etale classifying spaces of certain algebraic groups. In particular, we compute the classifying spaces of diagonalisable groups in the eta-periodic motivic stable homotopy category.

Haution, O. (2023). Odd rank vector bundles in eta-periodic motivic homotopy theory. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 1-32 [10.1017/S1474748023000294].

Odd rank vector bundles in eta-periodic motivic homotopy theory

Haution O.
2023

Abstract

We observe that, in the eta-periodic motivic stable homotopy category, odd rank vector bundles behave to some extent as if they had a nowhere vanishing section. We discuss some consequences concerning SLc-orientations of motivic ring spectra and the etale classifying spaces of certain algebraic groups. In particular, we compute the classifying spaces of diagonalisable groups in the eta-periodic motivic stable homotopy category.
Articolo in rivista - Articolo scientifico
motivic homotopy theory, orientations, motivic Hopf map, étale classifying spaces of linear groups
English
23-ago-2023
2023
1
32
open
Haution, O. (2023). Odd rank vector bundles in eta-periodic motivic homotopy theory. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 1-32 [10.1017/S1474748023000294].
File in questo prodotto:
File Dimensione Formato  
Haution-2024-J Inst Math Jussieu-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 516.58 kB
Formato Adobe PDF
516.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/449280
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
Social impact