Bissiri et al. (2016) present a general Bayesian approach where the like- lihood is replaced more generally by a loss function, which is used to derive the posterior distribution from the prior. In this paper, we exploit this idea for learning the structure of undirected graphical models over discrete variables.
Bissiri, P., Chiogna, M., Thi Kim Hue, N. (2020). Bayesian Inference of Undirected Graphical Models from Count Data. In Book of short papers SIS 2020 (pp.638-643). Pearson.
Bayesian Inference of Undirected Graphical Models from Count Data
Pier Giovanni Bissiri;
2020
Abstract
Bissiri et al. (2016) present a general Bayesian approach where the like- lihood is replaced more generally by a loss function, which is used to derive the posterior distribution from the prior. In this paper, we exploit this idea for learning the structure of undirected graphical models over discrete variables.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bissiri-2020-SIS-VoR.pdf
Solo gestori archivio
Descrizione: Intervento a convegno
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
453.85 kB
Formato
Adobe PDF
|
453.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.