This paper describes our contribution to the Answer Localization track of the MedVidQA 2022 Shared Task. We propose two answer localization approaches that use only textual information extracted from the video. In particular, our approaches exploit the text extracted from the video's transcripts along with the text displayed in the video's frames to create a set of features. Having created a set of features that represents a video's textual information, we employ four different models to measure the similarity between a video's segment and a corresponding question. Then, we employ two different methods to obtain the start and end times of the identified answer. One of them is based on a random forest regressor, whereas the other one uses an unsupervised peak detection model to detect the answer's start time. Our findings suggest that for this task, leveraging only text-related features (transmitted either verbally or visually) and using a small amount of training data, lead to significant improvements over the benchmark Video Span Localization model that is based on deep neural networks.

Kusa, W., Peikos, G., Espitia, O., Hanbury, A., Pasi, G. (2022). DoSSIER at MedVidQA 2022: Text-based Approaches to Medical Video Answer Localization Problem. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp.432-440). Association for Computational Linguistics [10.18653/v1/2022.bionlp-1.43].

DoSSIER at MedVidQA 2022: Text-based Approaches to Medical Video Answer Localization Problem

Peikos, G;Pasi, G
2022

Abstract

This paper describes our contribution to the Answer Localization track of the MedVidQA 2022 Shared Task. We propose two answer localization approaches that use only textual information extracted from the video. In particular, our approaches exploit the text extracted from the video's transcripts along with the text displayed in the video's frames to create a set of features. Having created a set of features that represents a video's textual information, we employ four different models to measure the similarity between a video's segment and a corresponding question. Then, we employ two different methods to obtain the start and end times of the identified answer. One of them is based on a random forest regressor, whereas the other one uses an unsupervised peak detection model to detect the answer's start time. Our findings suggest that for this task, leveraging only text-related features (transmitted either verbally or visually) and using a small amount of training data, lead to significant improvements over the benchmark Video Span Localization model that is based on deep neural networks.
paper
NLP, answer localization
English
21st Workshop on Biomedical Language Processing, BioNLP 2022 at the Association for Computational Linguistics Conference, ACL 2022 - 26 May 2022
2022
Proceedings of the Annual Meeting of the Association for Computational Linguistics
9781955917278
2022
432
440
https://aclanthology.org/2022.bionlp-1.43
open
Kusa, W., Peikos, G., Espitia, O., Hanbury, A., Pasi, G. (2022). DoSSIER at MedVidQA 2022: Text-based Approaches to Medical Video Answer Localization Problem. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp.432-440). Association for Computational Linguistics [10.18653/v1/2022.bionlp-1.43].
File in questo prodotto:
File Dimensione Formato  
10281-441079_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 728.5 kB
Formato Adobe PDF
728.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/441079
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
Social impact