The thermal air–sea interaction mechanism that modulates the atmospheric mixing due to sea-surface temperature (SST) variability is studied with long-term consistent satellite records. Statistical analyses of daily and instantaneous wind and SST data are performed over the major western boundary currents (WBCs). This wind–SST coupling, which is mediated by atmospheric mixing, is found to be very relevant on daily, and even shorter, time scales. Co-located and simultaneous SST and surface wind fields (from Advanced Very High Resolution Radiometer and Advanced Scatterometer data) reveal that the atmosphere responds instantaneously to the presence of SST structures with a larger coupling coefficient with respect to daily and monthly time-averaged fields. The coupling strength varies seasonally over WBCs in the Northern Hemisphere, with wintertime coupling being the lowest. Reanalysis data show that this behaviour is related to the seasonality of the air–sea temperature difference over the region of interest. Over the Northern Hemisphere WBCs, dry and cold continental air masses drive very unstable conditions, associated with very weak thermal air–sea coupling.
Meroni, A., Desbiolles, F., Pasquero, C. (2023). Satellite signature of the instantaneous wind response to mesoscale oceanic thermal structures. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 149(757 (October 2023 Part B)), 3373-3382 [10.1002/qj.4561].
Satellite signature of the instantaneous wind response to mesoscale oceanic thermal structures
Meroni, Agostino N.
;Desbiolles, Fabien;Pasquero, Claudia
2023
Abstract
The thermal air–sea interaction mechanism that modulates the atmospheric mixing due to sea-surface temperature (SST) variability is studied with long-term consistent satellite records. Statistical analyses of daily and instantaneous wind and SST data are performed over the major western boundary currents (WBCs). This wind–SST coupling, which is mediated by atmospheric mixing, is found to be very relevant on daily, and even shorter, time scales. Co-located and simultaneous SST and surface wind fields (from Advanced Very High Resolution Radiometer and Advanced Scatterometer data) reveal that the atmosphere responds instantaneously to the presence of SST structures with a larger coupling coefficient with respect to daily and monthly time-averaged fields. The coupling strength varies seasonally over WBCs in the Northern Hemisphere, with wintertime coupling being the lowest. Reanalysis data show that this behaviour is related to the seasonality of the air–sea temperature difference over the region of interest. Over the Northern Hemisphere WBCs, dry and cold continental air masses drive very unstable conditions, associated with very weak thermal air–sea coupling.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.