A combinatorial proof that surjective D-dimensional CA are non-wandering is given. This answers an old open question stated in Blanchard and Tisseur (2000) [3]. Moreover, an explicit upper bound for the return time is given. © 2013 Elsevier B.V. All rights reserved.

Acerbi, L., Dennunzio, A., Formenti, E. (2013). Surjective multidimensional cellular automata are non-wandering: A combinatorial proof. INFORMATION PROCESSING LETTERS, 113(5-6), 156-159 [10.1016/j.ipl.2012.12.009].

Surjective multidimensional cellular automata are non-wandering: A combinatorial proof

DENNUNZIO, ALBERTO;
2013

Abstract

A combinatorial proof that surjective D-dimensional CA are non-wandering is given. This answers an old open question stated in Blanchard and Tisseur (2000) [3]. Moreover, an explicit upper bound for the return time is given. © 2013 Elsevier B.V. All rights reserved.
Articolo in rivista - Articolo scientifico
Combinatorial problems; Multidimensional cellular automata; Symbolic dynamics; Discrete dynamical systems
English
2013
113
5-6
156
159
none
Acerbi, L., Dennunzio, A., Formenti, E. (2013). Surjective multidimensional cellular automata are non-wandering: A combinatorial proof. INFORMATION PROCESSING LETTERS, 113(5-6), 156-159 [10.1016/j.ipl.2012.12.009].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/43510
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
Social impact