AU Pathway: Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly enrichment analysis (PEA) is a computational biology : method that identifies biological functions that are overrepresented in a group of genes more than would be expected by chance and ranks these functions by relevance. The relative abundance of genes pertinent to specific pathways is measured through statistical methods, and associated functional pathways are retrieved from online bioinformatics databases. In the last decade, along with the spread of the internet, higher availability of computational resources made PEA software tools easy to access and to use for bioinformatics practitioners worldwide. Although it became easier to use these tools, it also became easier to make mistakes that could generate inflated or misleading results, especially for beginners and inexperienced computational biologists. With this article, we propose nine quick tips to avoid common mistakes and to out a complete, sound, thorough PEA, which can produce relevant and robust results. We describe our nine guidelines in a simple way, so that they can be understood and used by anyone, including students and beginners. Some tips explain what to do before starting a PEA, others are suggestions of how to correctly generate meaningful results, and some final guidelines indicate some useful steps to properly interpret PEA results. Our nine tips can help users perform better pathway enrichment analyses and eventually contribute to a better understanding of current biology.

Chicco, D., Agapito, G. (2022). Nine quick tips for pathway enrichment analysis. PLOS COMPUTATIONAL BIOLOGY, 18(8), 1-15 [10.1371/journal.pcbi.1010348].

Nine quick tips for pathway enrichment analysis

Chicco, D
;
2022

Abstract

AU Pathway: Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly enrichment analysis (PEA) is a computational biology : method that identifies biological functions that are overrepresented in a group of genes more than would be expected by chance and ranks these functions by relevance. The relative abundance of genes pertinent to specific pathways is measured through statistical methods, and associated functional pathways are retrieved from online bioinformatics databases. In the last decade, along with the spread of the internet, higher availability of computational resources made PEA software tools easy to access and to use for bioinformatics practitioners worldwide. Although it became easier to use these tools, it also became easier to make mistakes that could generate inflated or misleading results, especially for beginners and inexperienced computational biologists. With this article, we propose nine quick tips to avoid common mistakes and to out a complete, sound, thorough PEA, which can produce relevant and robust results. We describe our nine guidelines in a simple way, so that they can be understood and used by anyone, including students and beginners. Some tips explain what to do before starting a PEA, others are suggestions of how to correctly generate meaningful results, and some final guidelines indicate some useful steps to properly interpret PEA results. Our nine tips can help users perform better pathway enrichment analyses and eventually contribute to a better understanding of current biology.
Articolo in rivista - Articolo scientifico
Computational Biology; Databases, Factual; Humans; Software
English
11-ago-2022
2022
18
8
1
15
e1010348
open
Chicco, D., Agapito, G. (2022). Nine quick tips for pathway enrichment analysis. PLOS COMPUTATIONAL BIOLOGY, 18(8), 1-15 [10.1371/journal.pcbi.1010348].
File in questo prodotto:
File Dimensione Formato  
Chicco-2022-Plos Computat Biol-VoR.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 560.09 kB
Formato Adobe PDF
560.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/430239
Citazioni
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
Social impact