We show some applications of integral formulas, most notably the Hsiung–Minkowski formulas, the Rellich–Pohozaev identities, and variations thereof, to the study of geometric problems and PDE’s. Our presentation aims at underlining the common geometrical and analytical features of such formulas.

Pigola, S., Rigoli, M., A., S. (2003). Some Applications of Integral Formulas in Riemannian Geometry and PDE's. MILAN JOURNAL OF MATHEMATICS, 71, 219-281 [10.1007/s00032-003-0021-2].

Some Applications of Integral Formulas in Riemannian Geometry and PDE's

PIGOLA S.;
2003

Abstract

We show some applications of integral formulas, most notably the Hsiung–Minkowski formulas, the Rellich–Pohozaev identities, and variations thereof, to the study of geometric problems and PDE’s. Our presentation aims at underlining the common geometrical and analytical features of such formulas.
Articolo in rivista - Articolo scientifico
Integral formulas, Riemannian geometry
English
2003
71
219
281
reserved
Pigola, S., Rigoli, M., A., S. (2003). Some Applications of Integral Formulas in Riemannian Geometry and PDE's. MILAN JOURNAL OF MATHEMATICS, 71, 219-281 [10.1007/s00032-003-0021-2].
File in questo prodotto:
File Dimensione Formato  
Pigola-2003-Milan J Math-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 472 kB
Formato Adobe PDF
472 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/424515
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact