Dealing with multi-object tracking raises several issues; an essential point is to model possible interactions between objects. Indeed, while reliable algorithms for tracking multiple non-interacting objects in constrained scenarios exist, tracking of multiple interacting objects in uncontrolled scenarios is still a challenge. The multiple-object tracking problem can be broken down into two subtasks: the detection of target objects, and the association between objects along time. Interaction between objects can yield erroneous associations that cause the interchange of object identities, therefore, the explicit recognition of the relationships between interacting objects in the scene can be useful to better detect the targets and understand their dynamics, making tracking more accurate. To make inference in relational domains we have developed an extension of particle filter, called relational particle filter, able to track simultaneously the objects in the domain and the evolution of their relationships. Experimental results show that our method can follow the targets’ path more closely than standard methods, being able to better predict their behaviours while decreasing the complexity of the tracking.

Cattelani, L., Manfredotti, C., Messina, V. (2012). Multiple Object Tracking with Relations. In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods (pp.459-466). Pedro Latorre Carmona, J. Salvador Sánchez, Ana L. N. Fred.

Multiple Object Tracking with Relations

CATTELANI, LUCA;MANFREDOTTI, CRISTINA ELENA;MESSINA, VINCENZINA
2012

Abstract

Dealing with multi-object tracking raises several issues; an essential point is to model possible interactions between objects. Indeed, while reliable algorithms for tracking multiple non-interacting objects in constrained scenarios exist, tracking of multiple interacting objects in uncontrolled scenarios is still a challenge. The multiple-object tracking problem can be broken down into two subtasks: the detection of target objects, and the association between objects along time. Interaction between objects can yield erroneous associations that cause the interchange of object identities, therefore, the explicit recognition of the relationships between interacting objects in the scene can be useful to better detect the targets and understand their dynamics, making tracking more accurate. To make inference in relational domains we have developed an extension of particle filter, called relational particle filter, able to track simultaneously the objects in the domain and the evolution of their relationships. Experimental results show that our method can follow the targets’ path more closely than standard methods, being able to better predict their behaviours while decreasing the complexity of the tracking.
paper
tracking; particle filtering, relational dynamic bayesian networks
English
International Conference on Pattern Recognition Applications and Methods
2012
Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods
978-989-8425-98-0
2012
459
466
http://forskningsbasen.deff.dk/Share.external?sp=Sf1d2cff5-e9e1-4bbd-8d44-dbcaf0d29168&sp=Sku
none
Cattelani, L., Manfredotti, C., Messina, V. (2012). Multiple Object Tracking with Relations. In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods (pp.459-466). Pedro Latorre Carmona, J. Salvador Sánchez, Ana L. N. Fred.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/42433
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
Social impact