Objective. CD14(+) monocyte cell lines can differentiate into an osteoclast (OC)-like lineage. However, the identification of human cell lines with stem cell characteristics, capable of differentiating into OCs, would provide a tool for the study of the molecular mechanisms regulating their commitment, differentiation, and function. Since the human acute myeloid leukemia cell line MUTZ-3 contains both CD34(+) stem cell and CD14(+) cell populations, we investigated the capacity of the stem/progenitor CD34(+) population to differentiate into functional OCs. Materials and Methods. Sorted MUTZ-3-CD34(+) and MUTZ-3-CD14(+) cells were cultured in presence of M-CSF, RANK-L, and TNF-alpha to generate OCs. Differentiation was evaluated by TRAP staining and RT-PCR, which assessed the expression of c-fms, RANK, MMP-9, CATK, TRAP, and CTR in -CD34(+)OC and -CD14(+)OC cells. Resorption pit formation was also evaluated. CD34, CD14, M-CSF-R, RANK, and CTR expression was assessed by FACS analysis. Results. MUTZ-3-CD34(+) differentiated into OCs, displaying the full range of differentiation markers; MMP-9, CATK, TRAP, and RANK mRNA were detected from day 3 of culture, whereas CTR from day 12. Stimulated MUTZ-3-CD34(+) generated functional osteoclasts that formed extensive resorption lacunae on both mineralized surface and bone slices. Surprisingly, in both sorted populations we identified a population M-CSF-R+/RANK(+) that at the same time co-expressed CD14 and CD34. Conclusions. These findings demonstrate that MUTZ-3 cells constitute an invaluable model to study the expression pattern in different developmental stages of commitment and differentiation. Importantly, the data indicate that the CD14(+)CD34(+)M-CSF-R(+)RANK(+) population represents an intermediate stage of differentiation from CD34 precursors and monocytes to osteoclast. (c) 2007 International Society for Experimental Hematology. Published by Elsevier Inc.
Ciraci, E., Barisani, D., Parafioriti, A., Formisano, G., Arancia, G., Bottazzo, G., et al. (2007). CD34 human hematopoietic progenitor cell line, MUTZ-3, differentiates into functional osteoclasts. EXPERIMENTAL HEMATOLOGY, 35(6), 967-977 [10.1016/j.exphem.2007.03.003].
CD34 human hematopoietic progenitor cell line, MUTZ-3, differentiates into functional osteoclasts
BARISANI, DONATELLA;
2007
Abstract
Objective. CD14(+) monocyte cell lines can differentiate into an osteoclast (OC)-like lineage. However, the identification of human cell lines with stem cell characteristics, capable of differentiating into OCs, would provide a tool for the study of the molecular mechanisms regulating their commitment, differentiation, and function. Since the human acute myeloid leukemia cell line MUTZ-3 contains both CD34(+) stem cell and CD14(+) cell populations, we investigated the capacity of the stem/progenitor CD34(+) population to differentiate into functional OCs. Materials and Methods. Sorted MUTZ-3-CD34(+) and MUTZ-3-CD14(+) cells were cultured in presence of M-CSF, RANK-L, and TNF-alpha to generate OCs. Differentiation was evaluated by TRAP staining and RT-PCR, which assessed the expression of c-fms, RANK, MMP-9, CATK, TRAP, and CTR in -CD34(+)OC and -CD14(+)OC cells. Resorption pit formation was also evaluated. CD34, CD14, M-CSF-R, RANK, and CTR expression was assessed by FACS analysis. Results. MUTZ-3-CD34(+) differentiated into OCs, displaying the full range of differentiation markers; MMP-9, CATK, TRAP, and RANK mRNA were detected from day 3 of culture, whereas CTR from day 12. Stimulated MUTZ-3-CD34(+) generated functional osteoclasts that formed extensive resorption lacunae on both mineralized surface and bone slices. Surprisingly, in both sorted populations we identified a population M-CSF-R+/RANK(+) that at the same time co-expressed CD14 and CD34. Conclusions. These findings demonstrate that MUTZ-3 cells constitute an invaluable model to study the expression pattern in different developmental stages of commitment and differentiation. Importantly, the data indicate that the CD14(+)CD34(+)M-CSF-R(+)RANK(+) population represents an intermediate stage of differentiation from CD34 precursors and monocytes to osteoclast. (c) 2007 International Society for Experimental Hematology. Published by Elsevier Inc.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.